SciELO - Scientific Electronic Library Online

 
vol.55 issue2Exact calculation of the number of degrees of freedom of a rigid body composed of n particlesSome thoughts on the philosophy of color author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física E

Print version ISSN 1870-3542

Rev. mex. fís. E vol.55 n.2 México Dec. 2009

 

Enseñanza

 

The Cauchy problem for a forced harmonic oscillator

 

R.M. Lopez* and S.K. Suslov**

 

School of Mathematical and Statistical Sciences and Mathematical, Computational, and Modeling Sciences Center, Arizona State University, Tempe, AZ 85287–1804, U.S.A. e–mail:*rlopez14@asu.edu ; *sks@asu.edu

 

Recibido el 14 de agosto de 2009
Aceptado el 20 de agosto de 2009

 

Abstract

We construct an explicit solution of the Cauchy initial value problem for the one–dimensional Schrödinger equation with a time–dependent Hamiltonian operator for the forced harmonic oscillator. The corresponding Green function (propagator) is derived with the help of the generalized Fourier transform and a relation with representations of the Heisenberg–Weyl group N (3) in a certain special case first, and then is extended to the general case. A three parameter extension of the classical Fourier integral is discussed as a by–product. Motion of a particle with a spin in uniform perpendicular magnetic and electric fields is considered as an application; a transition amplitude between Landau levels is evaluated in terms of Charlier polynomials. In addition, we also solve an initial value problem to a similar diffusion–type equation.

Keywords: The Cauchy initial value problem; the Schrödinger equation; forced harmonic oscillator; Landau levels; the hypergeometric functions; the Hermite polynomials; the Charlier polynomials; Green functions; Fourier transform and its generalizations; the Heisenberg–Weyl group N (3).

 

Resumen

En el presente trabajo construimos una solución explícita unidimensional a la ecuación de Schrödinger con condiciones iniciales de Cauchy y con un operador Hamiltoniano dependiente del tiempo para el oscilador armónico forzado. La correspondiente función de Green (propagador) se deriva con aplicaciones de la transformada de Fourier generalizada y con una relación a las representaciones del grupo TV (3) de Heisenberg–Weyl, para un caso especial primero y después se extiende al caso general. Estudiamos por medio de un producto una extención de tres parámetros a la integral clásica de Fourier. Consideramos, como una aplicación, el movimiento de una partícula giratoria en un campo eléctrico y en un campo magnético perpendicularmente uniforme; evaluamos en términos de polinomios de Charlier una transición de amplitud entre los niveles de Landau. Además resolvemos una ecuación similar a la de difusión con valores iniciales.

Descriptores: Problema de valor inicial de Cauchy; ecuación de Schrödinger; osilador armónico forzado; niveles de Landau; funciones hipergeometricas; polinomios de Hermite; polinomios de Charlier; funciones de Green; transformada de Fourier y sus generalizaciones; el grupo Heisenberg–Weyl.

 

PACS: 45.20.–d; 02.30.–f; 02.30.Nw

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This paper is written as a part of the summer 2007 program on analysis of the Mathematical and Theoretical Biology Institute (MTBI) at Arizona State University. The MTBI/SUMS undergraduate research program is supported by The National Science Foundation (DMS–0502349), The National Security Agency (DOD–H982300710096), The Sloan Foundation, and Arizona State University. The authors are grateful (211) to Professor Carlos Castillo–Chávez for support and Ref. 8. We thank Professors George Andrews, George Gasper, Slim Ibrahim, Hunk Kuiper, Mizan Rahman, Svetlana Roudenko, and Hal Smith for valuable comments.

 

References

1. G.E. Andrews and R.A. Askey, Classical orthogonal polynomials, in: Polynômes orthogonaux et applications, Lecture Notes in Math. 1171, (Springer–Verlag, 1985) p. 36.        [ Links ]

2. G.E. Andrews, R.A. Askey, and R. Roy, Special Functions, (Cambridge University Press, Cambridge, 1999).        [ Links ]

3. G.P. Arrighini and N.L. Durante, Am. J. Phys. 64 (1996) 1036.        [ Links ]

4. R.A. Askey Orthogonal Polynomials and Special Functions, CBMS–NSF Regional Conferences Series in Applied Mathematics, (SIAM, Philadelphia, Pennsylvania, 1975).        [ Links ]

5. R.A. Askey, M. Rahman, and S.K. Suslov, J. Comp. Appl. Math. 68 (1996) 25.        [ Links ]

6. W.N. Bailey, Generalized Hypergeometric Series, (Cambridge University Press, Cambridge, 1935).        [ Links ]

7. L.A. Beauregard, Am. J. Phys. 34 (1966) 324.        [ Links ]

8. L.M.A. Bettencourt, A. Cintrón–Arias, D.I. Kaiser, and C. Castillo–Chávez, Phisica A 364 (2006) 513.        [ Links ]

9. N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields, third edition, (John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1980).        [ Links ]

10. L.S. Brown and Y. Zhang, Am. J. Phys. 62 (1994) 806.        [ Links ]

11. C.V.L. Charlier, Arkiv för Matematik, Astronomi och Fysik 2 (1905)35.        [ Links ]

12. T.S. Chihara, An Introduction to Orthogonal Polynomials, (Gordon and Breach, New York, 1978).        [ Links ]

13. A. S. Davydov, Quantum Mechanics, Pergamon Press, (Oxford and New York, 1965).        [ Links ]

14. A. Erdélyi, Higher Transcendental Functions, Vol. II, A. Erdélyi, ed., (McGraw–Hill, 1953).        [ Links ]

15. A. Erdélyi, Tables of Integral Transforms, Vols. I–II, A. Erdélyi, ed., (McGraw–Hill, 1954).        [ Links ]

16. R.P. Feynman, The Principle of Least Action in Quantum Mechanics, Ph. D. thesis, Princeton University, 1942; reprinted in: textquotedblleft Feynman's Thesis — A New Approach to Quantum Theory, L.M. Brown, Editor, (World Scientific Publishers, Singapore, 2005). pp. 1.        [ Links ]

17. R.P. Feynman, Rev. Mod. Phys. 20 (1948) 367;         [ Links ] reprinted in: textquotedblleft Feynman's Thesis — A New Approach to Quantum Theory, L.M. Brown, Editor, (World Scientific Publishers, Singapore, 2005) pp. 71.        [ Links ]

18. R.P. Feynman, Phys. Rev. 76 (1949) 749.        [ Links ]

19. R.P. Feynman, Phys. Rev. 76 (1949) 769.        [ Links ]

20. R.P. Feynman and A.R. Hibbs, Quantum Mechanics and Path Integrals, (McGraw–Hill, New York, 1965).        [ Links ]

21. S. Flugge, Practical Quantum Mechanics, (Springer–Verlag, Berlin, 1999).        [ Links ]

22. G. Gasper, J. Math. Anal. Appl. 42 (1973) 438.        [ Links ]

23. K. Gottfried and T.–M. Yan, Quantum Mechanics: Fundamentals, second edition, (Springer–Verlag, Berlin, New York, 2003).        [ Links ]

24. B.R. Holstein, Am. J. Phys. 65 (1997) 414.        [ Links ]

25. B.R. Holstein, Am. J. Phys. 67 (1998)583.        [ Links ]

26. J. Howland, Indiana Univ. Math. J. 28 (1979) 471.        [ Links ]

27. D.R. Jafaev, Teoret. Mat. Fiz. 45 (1980) 224.        [ Links ]

28. L.D. Landau and E.M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, (Pergamon Press, Oxford, 1977).        [ Links ]

29. V.P. Maslov and M.V. Fedoriuk, Semiclassical Approximation in Quantum Mechanics, (Reidel, Dordrecht, Boston, 1981).        [ Links ]

30. M. Meiler, R. Cordero–Soto, and S.K. Suslov, J. Math. Phys. 49 (2008) 072102.        [ Links ]

31. J. Meixner, J. London Math. Soc. 9 (1934) 6.        [ Links ]

32. J. Meixner, Mathematische Zeitscrift 44 (1939) 531.        [ Links ]

33. J. Meixner, Deutsche Math. 6 (1942) 341.        [ Links ]

34. E. Merzbacher, Quantum Mechanics, third edition, (John Wiley & Sons, New York, 1998).        [ Links ]

35. A. Messia, Quantum Mechanics, two volumes, (Dover Publications, New York, 1999).        [ Links ]

36. V. Naibo and A. Stefanov, Math. Ann. 334 (2006) 325.        [ Links ]

37. P. Nardone, Am. J. Phys. 61 (1993) 232.        [ Links ]

38. A.F. Nikiforov, S.K. Suslov, and V.B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, (Springer–Verlag, Berlin, New York, 1991).        [ Links ]

39. A.F. Nikiforov and V.B. Uvarov, Special Functions of Mathematical Physics, (Birkhäuser, Basel, Boston, 1988).        [ Links ]

40. J.D. Paliouras and D.S. Meadows, Complex Variables for Scientists and Engineers, second edition, (Macmillan Publishing Company, New York and London, 1990).        [ Links ]

41. E.D. Rainville, Special Functions (Chelsea Publishing Company, New York, 1960).        [ Links ]

42. M. Rahman and S.K. Suslov, Singular analogue of the Fourier transformation for the Askey–Wilson polynomials, in: Symmetries and Integrability of Difference Equations; D. Levi, L. Vinet, and P. Winternitz, Amer. Math. Soc. 9 (1996) 289.        [ Links ]

43. R.W. Robinett, Am. J. Phys. 64 (1996) 803.        [ Links ]

44. I. Rodnianski and W. Schlag, Invent. Math. 155 (2004) 451.        [ Links ]

45. L.I. Schiff, Quantum Mechanics , third edition, (McGraw–Hill, New York, 1968).        [ Links ]

46. W. Schlag, Dispersive estimates for Schrödinger operators: a survay, arXiv: math/0501037v3 (math.AP) 10 Jan 2005.        [ Links ]

47. E.M. Stein, Harmonic Analysis: Real–Variable Methods, Orthogonality, and Oscillatory Integrals , (Princeton University Press, Princeton, New Jersey, 1993).        [ Links ]

48. S.K. Suslov, Electronic Transactions on Numerical Analysis (ETNA) 27 (2007) 140.        [ Links ]

49. G. Szegö, Amer. Math. Soc. (Colloq. Publ., Vol. 23, Rhode Island, 1939).        [ Links ]

50. N.S. Thomber, and E.F. Taylor, Am. J. Phys. 66 (1998) 1022.        [ Links ]

51. N. Ya. Vilenkin, Special Functions and the Theory of Group Representations, (American Mathematical Society, Providence, 1968).        [ Links ]

52. N. Wiener, The Fourier Integral and Certain of Its Applications, (Cambridge University Press, Cambridge, 1933); (Dover edition published in 1948).        [ Links ]

53. K. Yajima, J. Math. Soc. Japan 29 (1977) 729.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License