SciELO - Scientific Electronic Library Online

 
vol.55 número1Digital images of a set of bright shapley ames disk galaxies from San Pedro Mártir glass platesEntendiendo la relatividad especial usando la frecuencia como concepto esencial índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física E

versión impresa ISSN 1870-3542

Rev. mex. fís. E vol.55 no.1 México jun. 2009

 

Enseñanza

 

Generalized treatment for diffusion waves

 

E. Marín*

 

* Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Instituto Politécnico Nacional, Legaria 694, Colonia Irrigación, 11500, México D.F., e–mail: emarinm@ipn.mx

 

Recibido el 4 de agosto de 2008
Aceptado el 4 de noviembre de 2008

 

Abstract

Intended for teaching purposes, the phenomenon of diffusion in the presence of periodical sources is described, taking into account a characteristic operator, (t), leading to a generalized hyperbolic equation. The essential features of the accompanying harmonic flux are presented. For this purpose the solution to the problem is interpreted in terms of diffusion waves, a peculiar class of waves with complex wave numbers whose generation, propagation and detection constitute the basis of modern analytical techniques able to measure optical and transport properties of materials in the condensed or gaseous phase. A generalized mathematical equation describing this kind of waves is shown and the existence of critical modulation frequencies, at which the diffusive fluxes change their behaviour, is demonstrated for different physical phenomena involving diffusion waves. The dispersion equation for diffusion waves is given, and different particular cases in modulation frequency "spectrum" are discussed.

Keywords: Diffusion; periodical sources; dispersion equation.

 

Resumen

Con propositos de enseñanza se describe el fenómeno de difusión en presencia de fuentes periódicas teniendo en cuenta un operador característico, (t), que conduce a una ecuación de difusión hiperbólica generalizada. Se presentan las características fundamentales del flujo de calor harmónico asociado a ella. Para ello se interpreta la solución del problema en términos de ondas de difusión, un tipo particular de ondas con números de onda complejos y cuya generación, propagación y detección constituyen las bases de técnicas analíticas modernas capaces de medir propiedades ópticas y de transporte de materiales en la fase condensada o gaseosa. Se presenta una ecuación matemática generalizada para describir esta clase de ondas y se demuestra para diferentes fenómenos que involucran las ondas de difusión la existencia de frecuencias de modulación características a las cuales el flujo difusivo cambia su carácter. Se presenta la ecuación de dispersión y se discuten diferentes casos particulares en el "espectro" de frecuencia de modulación.

Descriptores: Difusión; fuentes periódicas; ecuación de dispersión.

 

PACS: 51.20.+d; 66.10.Cb; 36.40.Sx; 68.35.Fx

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work was supported by project SIP 20080032–IPN. The author also wishes to thank COFAA–IPN and CONACyT. A. Cruz–Orea is gratefully acknowledged for the careful reading of the manuscript and J. Marín–Antuña for helpful discussions.

 

References

1. A.Mandelis, Phys. Today 53 (2000)29.        [ Links ]

2. A. Yodh and B. Chance, Phys. Today 48 (1995) 34.        [ Links ]

3. A. Mandelis (Ed.), Photoacoustic and Thermal Wave Phenomena in Semiconductors (New York: North Holland, 1987)        [ Links ]

4. S.K. Evnochides, S. Fukao, M. Yamamoto, T. Tsuda, and S. Kato, Radio Sci. 26 (1991) 1281.        [ Links ]

5. D.L. Cummings, R.L. Reuben, and D.A. Blackburn, Metall. Trans. A 15 (1984) 639.        [ Links ]

6. B.S.H. Royce, D. Voss, A. Bocarsly, J. Physique Suppl. 44 (1983) 325.        [ Links ]

7. R. Patterson and P. Doran, J Membr. Sci. 27 (1986) 105.        [ Links ]

8. G. Busse, F. Twardon, and R. Mueller, Springer Ser. Opt. Sci. 58 (1988) 329.        [ Links ]

9. A.M. Weinberg and E.P Wigner, The Physical Theory of Neutron Chain Reactors (Chicago: U of Chicago Press, 1958 (See also the Letters of A.B. Davis, M.G. Trefry, and N. Corngold commenting Ref. 1, as well as the Reply of Mandelis A in Physics Today (March 2001)        [ Links ]

10. E. Marín, J. Marín–Antuña, and P. Diaz–Arencibia, Eur. J. Phys. 23 (2002) 523.        [ Links ]

11. E. Marín, H. Vargas, P. Diaz, and I. Riech, Phys. Stat. Sol. (A) 179 (2000) 387.        [ Links ]

12. C. Cattaneo, Atti del Semin. Mat. E Fis. Univ. Modena 3 (1948) 3.        [ Links ]

13. D.D. Joseph and L. Preziosi, Rev. Mod. Phys. 61 (1989) 41.        [ Links ]

14. D.D. Joseph and L. Preziosi, Rev. Mod. Phys. 62 (1990) 375.        [ Links ]

15. D.Y Tzou, ASME J. Heat Transfer 117 (1995) 8.        [ Links ]

16. D.Y. Tzou, Int. J. Heat Mass Transfer 38 (1995) 3231.        [ Links ]

17. D.Y. Tzou, AIAA J. Thermophys. Heat Transfer 9 (1995) 686.        [ Links ]

18. M.A. Al–Nimr, M. Naji, and R.I. Abdallah, Int. J. Thermophys. 25, (2004) 949.        [ Links ]

19. M. Naji, M.A. Al–Nimr, and M. Hader, Int. J. Thermophys. 24, (2003) 545.        [ Links ]

20. M. Hader, M.A. Al–Nimr, and V.A. Hammoudeh, Int. J. Thermophys. 27, (2006) 665.        [ Links ]

21. D.P Almond, P.M. Patel, Photothermal Science and Techniques en Physics and its Applications, E.R. Dobbsand and S.B. Palmer (Eds) (Chapman and Hall, London, 1996).        [ Links ]

22. A. Salazar, Eur. J. Phys. 27 (2006) 1.        [ Links ]

23. A. Mandelis, L. Nicolaides, and Y. Chen, Phys. Rev. Lett. 87 (2001) 020801–1.        [ Links ]

24. E. Marín, Eur. J Phys. 28 (2007) 429.        [ Links ]

25. M. Chester, Phys. Rev. 131 (1963) 2013.        [ Links ]

26. J.B. Smith and G.A. Laguna, Phys. Lett. A 56 (1976) 223.        [ Links ]

27. M.B. Agranat et al., Sov. Phys.–JETP 52 (1980) 27.        [ Links ]

28. J.J. Vadasz et al., Int. J. Heat and Mass Transfer 48 (2005) 2673.        [ Links ]

29. L. Herrera and J. Martínez, Gen. Relativ. Grav. 30 (1998) 445.        [ Links ]

30. D.E. Glass, et al., J. Appl. Phys. 59 (1986) 1660.        [ Links ]

31. M.A. Al–Nimr and M. Naji, Int. J. of Thermophys. 21 (2000) 281.        [ Links ]

32. M.A. Al–Nimr, O.M. Haddat, and V.S. Arpaci, Heat and Mass Transfer 35 (1999) 459.        [ Links ]

33. Haji–Sheikh, W.J. Minkowycz, and E.M. Sparrow, J Heat Transfer 124 (2002) 307.        [ Links ]

34. E. Ahmed and S.Z. Hassan, Z. Naturforsh. 55a (2000) 669.        [ Links ]

35. J.B.J Fourier Analytical theory of Heat, translated by A. Freeman (Chicago: Encyclopedia Britannica, Inc., 1952).        [ Links ]

 

Note

* Formerly at Faculty of Physics, Havana University, Cuba.

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons