SciELO - Scientific Electronic Library Online

 
vol.54 número1Choque inelástico entre dos partículas: análisis basado en el coeficiente de restituciónBrownian motion in a magnetic field and in the presence of additional external forces índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física E

versión impresa ISSN 1870-3542

Rev. mex. fís. E vol.54 no.1 México jun. 2008

 

Enseñanza

 

On the need to enhance physical insight via mathematical reasoning

 

S. Rojas

 

Departamento de Física, Universidad Simón Bolívar, Venezuela, e–mail: srojas@usb.ve

 

Recibido el 13 de agosto de 2007
Aceptado el 4 de septiembre de 2007

 

Abstract

It is becoming common to hear teaching advice about spending more time on the "physics of the problem" so that students will get more physical insight and develop a stronger intuition that can be very helpful when thinking about physics problems. Based on this type of justification, mathematical skills such as the ability to compute moments of inertia, center of mass, or gravitational fields from mass distributions, and electrical fields from charge distributions are considered "distracting mathematics" and therefore receive less attention. Based on published cited research on the subject, we'll argue a) that this approach can have a negative influence on student reasoning when dealing with questions of rotational dynamics, a highly non–intuitive subject where even instructors may fail to provide correct answers, and b) that exposure of students to mathematical reasoning and to a wide range of computational techniques to obtain the moment of inertia of different mass distributions will make students more comfortable with the subject of rotational dynamics, thus improving their physical insight on the topic.

Keywords: Physical intuition; physics learning; teaching of physics; mathematical reasoning; student performance.

 

Resumen

Se está haciendo común escuchar sobre estrategias de enseñanza en los cursos de física que hacen enfasis en la "física del problema", justificandose en la esperanza que de esa forma los estudiantes obtendrían mejor intuición física y desarrollarían mejor sus capacidades al pensar en problemas de ciencias e ingenierías. De acuerdo con estas estrategias de enseñanza, habilidades matemáticas como por ejemplo la capacidad de calcular e interpretar momentos de inercia, centro de masa, campos gravitacionales de distribuciones de masa o campos eléctricos de distribuciones de carga se consideran como "matemáticas que distraen" y por lo tanto han de recibir menos atención. Con apoyo en estudios reportados en la literatura que referenciamos, en este trabajo discutimos a) que estas estrategias de enseñanza influyen negativamente en el razonamiento de los estudiantes cuando intentan describir aspectos relacionados con la dinámica rotacional, un tema altamente no–intuitivo donde incluso instructores con amplia experiencia enseñando la temática pueden no poder proporcionar respuestas correctas a problemas relacionados con el tema y b) que una exposicion de los estudiantes al razonamiento matemático que les permita discernir con certeza cuantitativa y cualitativa sobre la dependencia de la inercia rotacional de distribución de masa referente al eje de rotación les permitiría sentir más confianza, no solo cuando tratan del tema de la dinámica rotacional, sino también de otros temas afines de estudios en los cursos introductorios de física.

Descriptores: Intuición en física; aprendizaje en física; enseñanza de la física; razonamiento matemática; rendimiento estudiantil.

 

PACS: 01.40.gb; 01.40.Ha; 01.40.Fk

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

We are grateful to Dr. Cheryl Pahaham, who kindly provided useful comments on improving this article.

 

References

1. E.M. Lifshitz, Am. J. Phys. 45 (1977) 415.        [ Links ]

2. P.G. Hewitt, Conceptual Physics (Addison–Wesley, 7th. edition, 1993).        [ Links ]

3. F.J. Dyson, Scientific American 211 (1964) 128.        [ Links ]

4. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics (John Wiley & Sons, 6th edition, 2000).        [ Links ]

5. R.A. Serway and J.W. Jewett, Physics for Scientists and Engineers, 6th. edition (Thomson Learning, 2003).        [ Links ]

6. P.A. Tipler and G. Mosca, Physics for Scientists and Engineers, 5th edition (WH Freeman and Co, 2003).        [ Links ]

7. For instance, in a recent article (8) about the proper way to compute the electric field of a finite line of uniform charge, the author mentions that the problem is 'either ignored or handled incompletely in most textbooks' (8). Similar findings will be obtained in searching for rotational inertia problems. Now, in terms of teaching, recall that the geometry involved in handling the line charge problem is essentially the same as computing the rotational inertia of a finite line of uniform mass around an axis through the field point and perpendicular to the plane containing the finite line and the field point. Since the latter is first covered in a typical introductory calculus–based physics course, if properly presented, students could transfer their knowledge from one problem to another [18,19].

8. R.J. Rowley, Am. J. Phys. 74 (2006) 1120.        [ Links ]

9. L.G. Rimoldini and C. Singh, Phys. Rev. ST. Phys. Educ. Res. 1 (2005) 010102.        [ Links ]

10. C. Singh, Am. J. Phys. 70 (2002) 1103.        [ Links ]

11. C.v. Aufschnaiter and S.v. Aufschnaiter, Eur. J. Phys. 28 (2007) S51.        [ Links ]

12. One could also implement non–passive classroom demonstrations as discussed by C.H. Crouch, A.P. Fagen, J.P. Callan, and E. Mazur, Am. J. Phys. 72 (2004) 835.        [ Links ]

13. D. Hestenes, Am. J. Phys. 71 (2003) 104.        [ Links ]

14. F.R. Yeatts and J.R. Hundhausen, Am. J. Phys. 60 (1992) 716.        [ Links ]

15. E.F. Redish, Problem Solving and the Use of Math in Physics Courses, ArXiv Physics e–prints, 2006.        [ Links ]

16. B.L. Sherin, Cognition and Instruction 19 (2001) 479.        [ Links ]

17. J.S. Rigden, Am. J. Phys. 55 (1987) 877.        [ Links ]

18. F. Reif, Phys. Teach. 19 (1981) 310; see also references there in.        [ Links ]

19. F. Reif and L.A. Scott, Am. J. Phys. 67 (1999) 819; see also references there in.        [ Links ]

20. K.C. Yap and C.L. Wong, Phys. Educ. 42 (2007) 50.        [ Links ]

21. J.W. Dunn and J. Barbanel, Am. J. Phys. 68 (2000) 749.        [ Links ]

22. For instance, one could carefully design three problems dealing with rotational inertia computations involving linear, superficial and volumetric mass distributions about some axis, each one to be carefully solved using different techniques, emphasizing the teaching of identified thought processes (18,19) involved to interpret the concepts presented in the solution of the problem (one of them could be the analogy of the quantitative analysis on solving the problems with the computation of center of mass). To speed the time on presenting the solution and to spend more time on the physical interpretation of the results, instructors could hand out the solution in advance so a kind of dialog in the classroom could be established between the instructor and the students as a way of determining, bookkeeping, and properly addressing students' misconceptions or confusing ideas (a kind of teaching strategy by thinking aloud) (18,28).

23. M.J. Moelter, C. Hoellwarth, and R.D. Knight, Am. J. Phys. 73 (2005) 459.        [ Links ]

24. S.M. Lea, Am. J. Phys. 62 (1994) 627.        [ Links ]

25. Let us mention that in the study of Lea (24) we are looking at the data corresponding to the traditional honor class (emphasizing quantitative understanding) and the inquire–based class (emphasizing conceptual understanding). Table IV of the report (24) shows that the honors students did far better in the quantitative problem, while Table III shows that in a conceptual problem the inquire–based class did better than the honor class. Accordingly, these results are in accordance with the views expressed in this article in the sense that 'students must be taught both concepts and problem–solving skills explicitly if we want students to be proficient at both.' (23).

26. Rephrasing a remark of Professor Hestenes (13), conscious learning requires deliberate practice with critical feedback.

27. R. Mualem and B.S. Eylon, Phys. Teach. 45 (2007) 158; see also references there in.        [ Links ]

28. E.F. Redish and R.N. Steinberg, Phys. Today 52 (1999) 24; see also references there in.        [ Links ]

29. R.E. Scherr, Am. J. Phys. 75 (2007) 272.        [ Links ]

30. The results of Rimoldini and Singh study (9) might be a response to the question raised by Hoellwarth et al. (23) about 'what happens to problem–solving skills as conceptual understanding is increasingly emphasized? Are we sacrificing problem–solving development to make gains in conceptual understanding?'.

31. D. Klein, Am. J. Phys. 75 (2007) 101.        [ Links ]

32. C.H. Crouch and E. Mazur, Am. J. Phys. 69 (2001) 970.        [ Links ]

33. M.C. James, Am. J. Phys. 74 (2006) 689.        [ Links ]

34. W. Cerbin and B. Kopp, IJTLHE 18 (2006) 250; available at http://www.isetl.org/ijtlhe/.        [ Links ]

35. P.R.L. Heron and D.E. Meltzer, Am. J. Phys. 73 (2005) 390.        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons