SciELO - Scientific Electronic Library Online

 
vol.54 issue1Students' understanding of vectors in the context of forces author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física E

Print version ISSN 1870-3542

Rev. mex. fís. E vol.54 n.1 México Jun. 2008

 

Enseñanza

 

Impenetrable barriers in quantum mechanics

 

S. De Vincenzo

 

Escuela de Física, Facultad de Ciencias, Universidad Central de Venezuela, A.P. 47145, Caracas 1041–A, Venezuela, e–mail: svincenz@fisica.ciens.ucv.ve

 

Recibido el 24 de noviembre de 2006
Aceptado el 18 de septiembre de 2007

 

Abstract

We derive the expression V(x) u(x) = cδ (x — a) + v(x) u(x) (where V(x) is the potential, u(x) the wave function, c a constant and v(x) a finite potential function for x < a), which is present in the one–dimensional Schrödinger equation on the whole real line when we have an impenetrable barrier at x > a, that is, an infinite step potential there. By studying the solution of this equation, we identify, connect and discuss three different Hamiltonian operators that describe the barrier. We extend these results by constructing an infinite square–well potential from two impenetrable barriers.

Keywords: Quantum mechanics; Schrödinger equation; impenetrable barriers.

 

Resumen

Derivamos la expresión V(x) u(x) = cδ (x a) + v(x) u(x) (donde V(x) es el potencial, u(x) la funcion de onda, c una constante y v(x) una función potencial finita para x < a), la cual se presenta en la ecuación de Schrödinger unidimensional sobre toda la línea real cuando se tiene una barrera impenetrable en x > a, es decir, un potencial salto infinito allí. Estudiando la solución de esta ecuación, identificamos, conectamos y discutimos tres diferentes operadores hamiltonianos que describen la barrera. Extendemos estos resultados al construir un potencial de pozo cuadrado infinito a partir de dos barreras impenetrables.

Descriptores: Mecánica cuántica; ecuación de Schrödinger; barreras impenetrables.

 

PACS: 03.65.–w

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

I would like to thank the last anonymous referee for important comments and suggestions which led to improvements in the manuscript. Likewise, I would like to thank my relatives, as well my wife's relatives, in Italy, for their hospitality during summer 2007. In the time dedicated to this work, financial support was received from CDCH–UCV (project PI 03–00–6038–2005).

 

References

1. R. Seki, Am. J. Phys. 39 (1971) 929.        [ Links ]

2. H. Bethe and J. Goldstone, Proc. Roy. Soc. (London) A238 (1957) 551.        [ Links ]

3. A.L. Fetter and J.D. Walecka, Quantum Theory of Many–Particle Systems (New York: Dover, 2003) p. 363.        [ Links ]

4. P. Garbaczewski and W. Karwowski, Am. J. Phys. 72 (2004) 924, Preprint math–ph/0310023 v2 (Available at http://www.arxiv.org);         [ Links ] P. Garbaczewski and W. Karwowski 2001 Preprint math–ph/0104010 v1 (This is a different version than the precedent) (Available at http://www.arxiv.org).        [ Links ]

5. G. Bonneau, J. Faraut, and G. Valent, Am. J. Phys. 69 (2001) 322;         [ Links ] G. Bonneau, J. Faraut, and G. Valent 2001 Preprint quant–ph/0103153 (This is an extended version, with mathematical details) (Available at http://www.arxiv.org).        [ Links ]

6. V.S. Araujo, F.A.B. Coutinho and J.F. Perez, Am. J. Phys. 72 (2004) 203.        [ Links ]

7. T. Fülöp, T. Cheon and I. Tsutsui, Phys. Rev. A 66 (2002) 052102.        [ Links ]

8. M. Schechter, Operator Methods in Quantum Mechanics (New York: Dover, 2002) p. 234.        [ Links ]

9. N.C. Dias and J.N. Prata, 2007 Self–adjoint, globally defined Hamiltonian operators for systems with boundaries Preprint math–ph/0707.0948 v1 (Available at http://www.arxiv.org).        [ Links ]

10. N.C. Dias and J.N. Prata, J. Math. Phys. 43 (2002) 4602, Preprint quant–ph/0012140 v2 (Available at http://www.arxiv.org).        [ Links ]

11. N.C. Dias and J.N. Prata, Ann. Phys. 321 (2006) 495.        [ Links ]

12. D.H. Griffel, Applied Functional Analysis (New York: Dover, 2002) p. 19.        [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License