SciELO - Scientific Electronic Library Online

 
vol.52 issue1Revisando la ecuación de van der WaalsMaxwell equations in Lorentz covariant integral form author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de física E

Print version ISSN 1870-3542

Rev. mex. fís. E vol.52 n.1 México Jun. 2006

 

Enseñanza

 

Safety of UV radiation for autofluorescence diagnosis of skin cancer

 

J.A. Delgadoa, I. Quesadaa, L.M. Montañob y L. Anasagastic

 

a Department of Physics, Centre for Technological Applications and Nuclear Development, CEADEN-CITMA, P.O. Box 6122. Havana, Cuba. Currently at INAOE, Tonantzintla, Puebla, México.

b Department of Physics, CINVESTAV-IPN, Apartado Postal 14-740, 07000 México, D.F. México.

c National Institute of Oncology and Radiobiology, INOR-MINSAP, P.O. Box 6024, Havana, Cuba.

 

Recibido el 10 de agosto de 2005;
Aceptado el 8 de diciembre de 2005.

 

Abstract

It has been demonstrated that ex-vivo human skin autofluorescence is different for healthy and diseased tissue. In order to use these results for in vivo clinical applications, it is necessary to guarantee safe levels of UV radiation during skin scanning of patients and protect the eyes from scattered UV radiation coming from the skin surface. One of the goals of this work is to extend maximum limits of exposure to ultraviolet radiation in the spectral region between 315 and 400 nm. We also analyze irradiation levels of typical commercial ultraviolet LEDs and semiconductor lasers for application on skin cancer demarcation. Experimental measurements were not carried out in this paper.

Keywords: Ultraviolet; skin cancer; exposure; laser.

 

Resumen

Se ha demostrado que la autofluorescencia en la piel humana ex-vivo es diferente para tejidos sanos y enfermos. Para usar estos resultados en aplicaciones clínicas in vivo, es necesario garantizar niveles seguros de radiación UV durante la exploración de la piel de pacientes y proteger los ojos de la dispersión de la radiación UV que proviene de la superficie de la piel. Uno de los objetivos de este trabajo es proveer de una guía de los límites máximos de exposición a la radiación ultravioleta en la región espectral entre 315 y 400 nm. También han sido analizados los niveles de irradiación de los LEDs ultravioleta comerciales típicos y de láseres semiconductores para la aplicación en la demarcación del cáncer de piel. No se realizaron mediciones experimentales en este trabajo.

Descriptores: Ultravioleta; cáncer de piel; exposición; laser.

 

PACS: 87.50.Gi; 28.80.Fj

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. W.M. Sharman, C.M. Allen, and J.E. VanLier, Drug discovery Today 4 (1999) 507.         [ Links ]

2. S.K. Majumder, A. Uppal, and P.K. Gupta, "Nitrogen Laser Excited Autofluorescence Spectroscopy for Discrimination of Human Breast Malignancy", in OSA tops on Biomedical Optical Spectroscopy and Diagnostics-1996, Vol 3, Edited by E. Sevick-Muraca and D. Benaron, © 1996 Optical Society of America.         [ Links ]

3. A. Katz and R.R. Alfano, IEEE Lasers and Electro-Optics Society 10 (1996) 1.         [ Links ]

4. K.T. Schomaker et al., Laser in Surgery and Medicine 12 (1992) 63.         [ Links ]

5. M. Sackman, Endoscopy 32 (2000) 977.         [ Links ]

6. J.A. Delgado, L. Rubiera, and L. Anasagasti, "Overview of Instrumentation for Diagnosis of Cancer using Laser Induced Fluorescence Spectroscopy", in Sixth Mexican Symposium on Medical Physics-2002, edited by L.M. Montano et al. (AIP Conferences Proceedings 630, Melville, New York, 2002) p. 185.         [ Links ]

7. J.A. Delgado, L. Anasagasti, I. Quesada, J.C. Cruz, and A.Y. Joan, "Ex-vivo Autofluorescence Measurements of Human Tissues", in VII Mexican Symposium on Medical Physics-2003, accepted for publication.         [ Links ]

8. D. Wiegleb Edstrom, Long-wave ultraviolet radiation (UVA1) and visible light. Therapeutic and adverse effects in human skin., PhD thesis, (2001).         [ Links ]

9. T.B. Fitzpatrick, Ultraviolet-induced pigmentary changes: benefits and hazards., Curr Probl Derm 15 (1986) 25.         [ Links ]

10. J.A. Parrish, Photobiology and photomedicine, Laser Photobiology and photomedicine, editted by S. Martellucci and A.N. Chester (Plenum Press, New York and London).         [ Links ]

11. M. Velez and J. Colls, Comportamiento de la luz en la interacción con los tejidos, en especial el laser de baja potencia, Bol. n.o 15-16(1988).         [ Links ]

12. UV Radiation. Environmental Health Criteria 160, UNEP/WHO/ICNIRP, (1994).         [ Links ]

13. Health Physics 49 (1985) 331.         [ Links ]

14. R.J.W. Berg, F.R. de Gruijl, and J.C. van der Leun, Cancer research 53 (1993) 4212.         [ Links ]

15. Health Physics 56 (1989) 971.         [ Links ]

16. Health Physics 71 (1996) 978.         [ Links ]

17. Health Physics 71 (1996) 804.         [ Links ]

18. H.J.C.M. Sterenborg etal., Lasers in Medical Science 9 (1994) 191.         [ Links ]

19. A.E. Profio and F. Carstens, Med. Phys. 13 (1986) 717.         [ Links ]

20. P.K. Gupta, S.K. Majumder, and A. Uppal, Laser in Surgery and Medicine 21 (1997) 417.         [ Links ]

21. E. Endlicher, R. Knuechel, R-M. Szeimies, J. Scholmerich, and H. Messmann, Gut 48 (2001 314).         [ Links ]

22. S. Lam and H.D. Becker, Chest Surgery Clinics of America 6 (1996) 363.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License