SciELO - Scientific Electronic Library Online

vol.88 número3Dinámica de la fenología y visitantes florales de dos bromelias terrestres de un páramo de ColombiaDiversidad de arañas del suelo y su relación con ambientes heterogéneos del Parque General San Martín, Entre Ríos, Argentina índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Revista mexicana de biodiversidad

versión On-line ISSN 2007-8706versión impresa ISSN 1870-3453

Rev. Mex. Biodiv. vol.88 no.3 México sep. 2017 


Seasonal variation of gastro-intestinal helminths of three bat species in the dry forest of western Mexico

Variación estacional de helmintos gastrointestinales en tres especies de murciélagos en el bosque tropical caducifolio del occidente de México

Valeria B. Salinas-Ramosa  * 

L. Gerardo Herrerab 

David I. Hernández-Menaa 

David Osorio-Sarabiac 

Virginia León-Règagnonb 

a Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-153, 04510 Mexico City, Mexico

b Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 21, 48980 San Patricio, Jalisco, Mexico

c Departamento de Zoología, Laboratorio de Helmintología, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado postal 70-153, 04510 Mexico City, Mexico


Studies on helminths of chiropterans are relatively uncommon compared to those of other animals, and seasonal changes in helminth load have been rarely examined. We characterized the gastro-intestinal helminth load of 3 bats species to test for the existence of seasonal changes in response to known seasonal environmental and bat prey fluctuations. We did not find seasonal variation in most of the cases. However, the prevalence of 4 endoparasite species was significantly higher during one of the seasons. The highest richness was registered in Pteronotus parnellii during the wet season. The effective number of species was higher during the dry season in the 3 species of Pteronotus. Diet seems to be an important driver of helminth infracommunity structure, but we found heterogeneous patterns in the relationship between diversity and load of helminths and seasonal patterns of bat's diets and abundance of potential intermediate hosts.

Keywords: Bat; Endoparasites; Interactions; Pteronotus; Seasonality


Las investigaciones sobre los helmintos de quirópteros son relativamente escasas en comparación con las de otros vertebrados y los cambios estacionales en su carga han sido poco estudiados. En este estudio se caracterizó la carga de helmintos gastrointestinales de 3 especies de murciélagos para probar la existencia de cambios estacionales en respuesta a las fluctuaciones ambientales y de presas. No se encontró variación estacional en la mayoría de los casos. Sin embargo, la prevalencia de 4 especies de endoparásitos fue significativamente mayor durante una de las épocas. La mayor riqueza de especies se registró en P. parnellii durante la época de lluvias. El número efectivo de especies fue mayor durante estaciones secas en las 3 especies de Pteronotus. La dieta parece dirigir la estructura de las infracomunidades de helmintos, aunque se encontraron patrones heterogéneos en la relación entre la diversidad y la carga de helmintos y los patrones estacionales de la dieta y la abundancia de los posibles huéspedes intermediarios.

Palabras clave: Murciélago; Endoparásitos; Interacciones; Pteronotus; Estacionalidad


All organisms, including parasites, are influenced directly or indirectly by environmental variations (Marcogliese, 2001; Pilosof, Dick, Korine, Patterson, & Krasnov, 2012). The transmission, development and distribution of parasites can be regulated by abiotic factors (Brooks & Hoberg, 2007; Gotz, Harf, Sommer, & Matthee, 2010). In particular, dynamics of helminths are regulated by environmental conditions such as ambient temperature, humidity and precipitation (Appleton and Gouws, 1996, Doi and Yurlova, 2011; Hudson, Cattadori, Boag, & Dobson, 2006; Mouritsen & Poulin, 2002; Moyer, Drown, & Clayton, 2002; Tinsley et al., 2011). A few studies have also suggested that seasonal variation in parasite communities is influenced by biotic factors such as abundance, diet, reproductive behavior, and immunocompetence of hosts (Carvalho and Luque, 2011, Esch and Fernández, 1993, Felis and Esch, 2004; Šimková, Jarkovsky, Koubková, Barus, & Prokes, 2005).

Bats are one of the most diverse and widespread of mammal orders (Altringham, 1996, Wilson and Reeder, 2005). Studies of helminths in chiropteran populations are relatively uncommon compared to those of other animals (Kirschbaum, Perkins, & Gannon, 2009; Lord, Parker, Parker, & Brooks, 2012). Chiropterans harbor a great variety of helminths, including trematodes, cestodes, and nematodes (Cuartas-Calles and Muñoz-Arango, 1999, Lord et al., 2012) and most studies consist of checklists of species and new descriptions of host or localities (Guzmán-Cornejo, García-Prieto, Pérez-Ponce de León, & Morales-Malacara, 2003; McAllister, Bursey, & Dowler, 2007; Muñoz et al., 2011; Nahhas, Yang, & Uch, 2005; Nogueira, de Fabio, & Peracchi, 2004; Shimalov, Demyanchik, & Demyanchik, 2002). Nevertheless, a few studies have explored the effect of seasonal variation in intensity and prevalence of bat endoparasites (Blankespoor & Ulmer, 1970; Coggins, Tedesco, & Rupprecht, 1982; Lord et al., 2012, Nickel and Hansen, 1967). For example, studies with insectivorous bats have reported that prevalence and intensity of helminths are low during the spring, increase in the summer and reach a peak in the autumn (Blankespoor and Ulmer, 1970, Nickel and Hansen, 1967). Among other factors intrinsic to host biology, seasonal changes in endoparasite abundance might be related to increased abundance of arthropods that act as intermediate hosts and that are then ingested by bats (Lord et al., 2012).

Trematodes are the most diverse group of helminths found in bats (Coggins, 1988, Ubelaker, 1970). They are found mainly within the gastrointestinal tract and in other body cavities (Coggins, 1988, Ricci, 1995, Shimalov et al., 2002), and their incidence and prevalence are affected by the host's feeding habits (Coggins, 1988, Marshall and Miller, 1979). For example, most digenean species (trematodes) have been collected in insectivorous bats since they are more prone to ingest infected insects (intermediate hosts) than nectar or fruit feeding bats (Coggins, 1988; García-Vargas, Osorio, & Pérez-Ponce de León, 1996; Lord et al., 2012, Ubelaker, 1970). Studies with other vertebrates (e.g., fishes) have reported that the diet of the host determines the abundance and richness of helminths (Bell and Burt, 1991, Poulin and Morand, 2004, Šimková et al., 2005).

In this study, we investigated the seasonal variation of the endoparasitic load in 3 insectivorous [Pteronotus davyi (Gray), P. parnellii (Gray), and P. personatus (Wagner)] bat species. Previous studies have reported the helminthological record of these bats species in Mexico (Caballero-Caballero and Zerecero, 1942, Espericueta-Viera, 2012, García-Vargas et al., 1996, Guzmán-Cornejo et al., 2003; Peralta-Rodríguez, Caspeta-Mandujano, & Guerrero, 2012; Pérez-Ponce de León, León-Régagnon, & García-Vargas, 1996), but few have examined seasonal variations of infection patterns. For example, Clarke (2008) found no seasonal variation in endoparasite species composition of P. davyi and P. personatus and no seasonal difference in prevalence and abundance in a related species (Mormoops megalophylla) in a tropical deciduous forest in southern Mexico.

The study was conducted in a highly seasonal dry forest. Tropical dry forests have extreme changes in the physiognomy and availability of food resources during the wet and dry seasons, affecting the composition and diversity of fauna (Castaño-Meneses, 2014). For instance, the abundance of arthropods in tropical dry forests experiences considerable seasonal fluctuations, reaching its highest level during the wet season (Andresen, 2005, Castaño-Meneses, 2014, Güizado and Casas-Andreu, 2011, Leavings and Windsor, 1984), a pattern that has been previously reported for the study region (Pescador-Rubio, Rodríguez-Palafox, & Noguera, 2002).

A previous study using DNA barcodes showed that the diet of the 3 species of Pteronotus considered in our study is more diverse during the dry season (Salinas-Ramos, Montalvo, León-Regagnon, Arrizabalaga-Escudero, & Clare, 2015). For completing their transmission, some species of helminths use arthropods as intermediate hosts (Bush, Fernández, Esch, & Seed, 2001; Clarke, 2008) and insectivorous bats as definite host (Chitwood, 1938, García-Vargas, 1995). Accordingly, we predicted that the endoparasite load in insectivorous bats would exhibit seasonal changes, having the highest richness during the dry season (spring), when their diet is more diverse (Salinas-Ramos et al., 2015). In contrast, we expected that the prevalence, abundance and intensity of helminths would be higher in the rainy season, when the abundance of intermediate hosts peaks (Lord et al., 2012).

Material and methods

The 3 focal bat species roost in a cave in San Panchito Island, off the Pacific coast in Jalisco, Mexico (19°32′6″ N, 105°5′17.9″ W). The adjacent continental region is composed of tropical deciduous and tropical semideciduous forest (Rzedowski, 1981), with most of the rainfall occurring from July to November (Bullock, 1995; Méndez-Alonzo, Pineda-García, Paz, Rosell, & Olson, 2013; Pringle, Dirzo, & Gordon, 2012). We carried out 3 collecting trips during the dry season (spring: June 2012, April 2013, May 2014) and 4 in the wet season (summer: July 2013; autumn: November 2012, November 2013 and September 2014). Bats were collected with mist nests at sunset and with sweep nets inside the cave during the morning. All the specimens captured were adults and we held each individual in a cotton bag. Bats were transported to the Estación de Biología Chamela.

Bats were sacrificed with chloroform and deposited as voucher specimens in the National Mammal Collection (CNMA) of the Instituto de Biología and in the Mammal Collection of the Zoology Museum, Universidad Nacional Autónoma de México (MZFC, UNAM). The gastrointestinal tract was dissected from each bat and immersed in phosphate-buffered saline solution in a Petri dish. The stomach and intestine were examined carefully using a stereo microscope (Leica Microsystems, ES2, Wetzlar, Germany). All the helminths were fixed by sudden immersion in hot 4% formalin and preserved in 70% ethanol. Specimens were stained with Mayer's paracarmine, dehydrated, cleared in methyl salicylate and mounted in Canada balsam (Lamothe-Argumedo, 1997). Morphological data were cross-referenced with the available literature on species known to be present in bats (García-Vargas, 1995, Justine, 1989, Moravec, 1982, Vaucher, 1992, Vaucher and Durette-Desset, 1986).

In order to characterize the seasonal variation in endoparasite load, we calculated the following descriptors of parasite populations: prevalence, abundance and intensity in the dry and wet seasons. We performed a chi-squared test with the prevalence data and a bootstrap test with the mean abundance and mean intensity values of each endoparasite species to evaluate significant differences between the seasons. We also calculated for each bat species the proportion of hosts infected considering the total endoparasite records, the average number of total endoparasites per host individual examined, and the average number of total endoparasites per infected host individual. Statistical analyses were conducted in Quantitative Parasitology (Version, 3.0, Reiczigel & Rózsa, 2005), and the significance level was set at p ≤ 0.05.

Richness, Shannon–Wiener and Simpson–Gini indexes were calculated to assess the diversity of endoparasite species during both seasons for each bat species. We transformed index values to the effective number of species (Hill, 1973, MacArthur, 1965) in order to unify an intuitive interpretation of diversity (Jost, 2006). Descriptive analyses and graphics were conducted in GraphPad Prism (Version 6.0 for Windows, GraphPad Software, La Jolla, CA, USA).


One hundred and twenty three bats were collected during 7 fieldtrips, 40% of which had at least 1 helminth species. We found 10 species of parasites, totaling 955 individual helminths, of which 50% belonged to 5 nematode species, followed by 4 trematode species and 1 cestode species (40% and 10% of individuals, respectively). Only 6 of these species were collected in both seasons. Pteronotus personatus had the highest number of helminth individuals from the total of helminths. Two individual helminths collected in P. davyi were in too poor conditions to be identified to species and were not included in measurements of richness and diversity (Table 1). Limatulum gastroides was the only species recorded in the 3 insectivorous bat species and it was particularly abundant in P. personatus (Table 1).

Table 1 Frequencies of helminths in 3 species of bats during the dry and wet seasons. 

Host P. davyi P. parnellii P. personatus
Season Dry Wet Dry Wet Dry Wet
Bats captured/no. of infested 24/4 24/8 20/5 27/12 11/11 17/9
 Vampirolepis elongatus 1 5
 Anoplostrongylinae gen. sp. 1
 Capillarida sp. 14 2 2
 Linustrongylus pteronoti 4 2
 Physalopteridae gen. sp. 4
 Websternema parnellii 6 3 2
 Parametadelphis sp. 127
 Lecithodendriidae gen. sp. 96
 Limatulum gastroides 3 2 40 384 252
 Urotrema sp. 2 1
 Unidentified specimen 2
Total 7 20 13 183 480 252

Prevalence was similar for both seasons in most endoparasite species except for Capillaria sp. and Websternema parnellii, which had a higher prevalence in the wet season in P. davyi, and Anoplostrongylinae gen. sp. and L. gastroides, in which prevalence was higher in the dry season in P. parnellii and P. personatus, respectively (Table 2). Mean abundance and intensity did not differ significantly between seasons for any endoparasite species (Table 3).

Table 2 Prevalence registered in helminth parasites of Pteronotus species during the dry and wet seasons. P = values of chi-squared test with prevalence data and bootstrap test with the mean abundance and intensity data. Confidence intervals (CI) were set to 95% probability. 

Prevalence (%; 95% CI)
Dry Wet P
P. davyi
 Urotrema sp. 4 (0.10–21.10) 0 0.31
 L. gastroides 8 (1.00–27.00) 0 0.14
 Capillaria sp. 0 25 (9.80–46.7) 0.00
 W. parnellii 0 17 (4.70–37.4) 0.03
P. parnellii
 Capillaria sp. 10 (1.20–31.70) 4 (0.10–19.00) 0.38
 L. pteronoti 15 (3.20–37.90) 7 (0.90–24.30) 0.38
 W. parnellii 10 (1.20–31.70) 4 (0.10–19.00) 0.38
 Anoplostrongylinae gen. sp. 5 (0.10–24.90) 0 0.00
 L. gastroides 10 (1.20–31.70) 11 (2.40–29.20) 0.27
 V. elongatus 5 (0.10–24.90) 4 (0.10–19.00) 0.82
 Parametadelphis sp. 0 7 (0.90–24.30) 0.21
 Urotrema sp. 0 4 (0.10–19.00) 0.38
 Physalopteridae gen sp. 0 4 (0.10–19.00) 0.38
P. personatus
 Lecithodendriidae gen. sp. 9 (0.20–41.30) 0 0.20
 L. gastroides 91 (58.70–99.80) 53 (27.80–77.00) 0.03

Table 3 Mean abundance and intensity registered in helminth parasites of Pteronotus species during the dry and wet seasons. P = values of chi-squared test with prevalence data and bootstrap test with the mean abundance and intensity data. Confidence intervals (CI) were set to 95% probability. 

Mean abundance (95% CI) Mean intensity (95% CI)
Dry Wet P Dry Wet P
P. davyi
 Urotrema sp. 0.08 (0.00–0.25) 0.00 0.42 2.00 (0.00) 0.00 1.00
 L. gastroides 0.12 (0. 00–0.37) 0.00 0.28 1.50 (1.00–2.00) 0.00 1.00
 Capillaria sp. 0.00 0.58 (0.20–1.46) 0.13 0.00 2.33 (1.17–4.33) 1.00
 W. parnellii 0.00 0.25 (0.04–0.54) 0.08 0.00 1.50 (1.00–1.75) 1.00
P. parnellii
 Capillaria sp. 0.13 (0.00–0.20) 0.07 (0.00–0.22) 0.63 1.00 (0.00) 2.00 (0.00) 1.00
 L. pteronoti 0.25 (0.05–0.45) 0.07 (0.00–0.18) 0.27 1.33 (1.00–1.67) 1.00 (0.00) 0.33
 W. parnellii 0.15 (0.00–0.45) 0.07 (0.00–0.22) 0.48 1.50 (1.00–1.50) 2.00 (0.00) 1.00
 Anoplostrongylinae gen. sp. 0.05 (0.00–0.15) 0.00 0.43 1.00 (0.00) 0.00 1.00
 L. gastroides 0.12 (0.00–0.25) 1.48 (0.03–7.11) 0.10 1.00 (0.00) 13.30 (1.00–25.70) 0.05
 V. elongatus 0.05 (0.00–0.15) 0.18 (0.00–0.55) 0.59 1.00 (0.00) 5.00 (0.00) 1.00
 Parametadelphis sp. 0.00 4.70 (0.00–18.70) 0.43 0.00 63.5 (2.00–63.5) 1.00
 Urotrema sp. 0.00 0.03 (0.00–0.11) 0.45 0.00 1.00 (0.00) 1.00
 Physalopteridae gen sp. 0.00 0.14 (0.00–0.44) 0.43 0.00 4.00 (0.00) 1.00
P. personatus
 Lecithodendriidae gen. sp. 8.73 (0.00–26.20) 0.00 0.42 96.00 (0.00) 0.00 1.00
 L. gastroides 34.90 (20.00–61.40) 14.82 (6.89–28.10) 0.13 38.40 (23.9–69.50) 28.00 (16.90–43.4) 0.43

Percent of bats infected, average number of endoparasites per examined individual host and average number of endoparasites per infected individual host did not differ between seasons in most cases (Table 4). The only exception to this pattern was P. personatus, in which there was a higher proportion of infected bats in the dry season (Table 4).

Table 4 Comparative of endoparasite load between the dry and wet season in 3 species of bats. N = number of bats collected; PHI = proportion of hosts infected considering the total endoparasite records; THE = average number of total endoparasites per host individual examined; THI = average number of total endoparasites per infected host individuals. P = values of chi-squared test with PHI data and bootstrap test with THE and THI data. Confidence intervals (CI) were set to 95% probability. 

Specie N Infected PHI (%) P THE P THI P
P. davyi
Dry season 24 4 16.7 (0.04–0.37) 0.29 (0.08–0.58) 1.75 (1.00–2.00)
Wet season 24 8 33.3 (0.15–0.55) 0.18 0.83 (0.37–1.58) 0.13 2.50 (1.62–3.88) 0.28
P. parnellii
Dry season 20 5 25 (0.0–0.49) 0.65 (0.20–1.30) 2.60 (2.00–3.20)
Wet season 37 12 32.4 (0.18–0.49) 0.55 6.7 (2.49–22.90) 0.24 20.83 (8.75–55.5) 0.26
P. personatus
Dry season 11 11 100 (0.71–1.00) 43.6 (26.50–69.30) 43.64 (27.20–71.10)
Wet season 17 9 52.9 (0.27–0.77) 0.00 14.8 (7.30–28.50) 0.05 28.00 (16.90–42.70) 0.25

The highest helminth richness was recorded in P. parnellii in both seasons (Fig. 1). In terms of diversity, effective number of species calculated from Shannon–Wiener and Simpson–Gini Indexes were greater for all Pteronotus species during the dry season (Fig. 2).

Figure 1 Richness of helminth species during the dry and wet seasons in 3 species of bats. 

Figure 2 Effective number of species calculated from Shannon–Wiener and Simpson–Gini indexes (A and B, respectively) during the dry and wet seasons in 3 species of insectivorous bats (Pteronotus). 


We characterized the endoparasite load of 3 insectivorous bat species to examine the existence of seasonal changes in response to known seasonal ambient and prey fluctuations. Below, we discuss how our findings fitted to our predictions.

Our hypothesis of seasonal changes in parasite load was rejected in most cases either when comparing helminth species or the total endoparasite species. Mean abundance and intensity did not differ significantly between seasons for any endoparasite species. Our prediction of higher parasite load in the wet season was supported by the finding of higher prevalence in this season in Capillaria sp. and W. parnellii in P. davyi. In contrast, prevalence in Anoplostrongylinae gen. sp. and L. gastroides was higher in the dry season in P. parnellii and P. personatus, respectively. Percent of bats infected, average number of endoparasites per examined host individual and average number of endoparasites per infected host individual did not differ between seasons in most cases. The only exception to this pattern was P. personatus in which there was a higher proportion of infected bats in the dry season in contrast to our prediction.

Epidemiological models predict a positive relationship between host population density and abundance of macroparasite populations (Altizer, Harvell, & Friedle, 2003; Anderson and May, 1978, Anderson and May, 1991; May & Anderson, 1978). When the host density is high, the transmission stages (e.g., eggs, larvae) of the parasite increase their probability of finding a permanent or intermediate host (Anderson & May, 1978; Arneberg, Skorping, Grenfell, & Read, 1998; Lafferty, 1997, May and Anderson, 1978). Our findings partly coincide with the increase in helminth abundance found in temperate insectivorous bats when abundance of intermediate hosts is presumably higher (Blankespoor and Ulmer, 1970, Lord et al., 2012, Nickel and Hansen, 1967), and with a study in which no seasonal patterns in helminth abundance were found in tropical insectivorous bats (Clarke, 2008). The lack of a uniform pattern in the cases when seasonal changes of parasite load were detected suggests that seasonal changes in the abundance of arthropod species that serve as intermediate hosts also might not be uniform. We based our prediction of a higher infestation rate in the wet season on the large increase in arthropod abundance during this season in the study region (Andresen, 2005, Güizado and Casas-Andreu, 2011). The variation in diet of Pteronotus species in Chamela is driven by the abundance and availability of insect prey (Salinas-Ramos et al., 2015), which are highly variable in time and space (Aldridge and Rautenbach, 1987, Whitaker, 1994). More than 1,423 species of arthropods have been recorded in Chamela, of which 570 species are found throughout the year while 622 and 231 species are found only during the wet or dry season, respectively (Pescador-Rubio et al., 2002). Seasonal changes in the abundance of some species of helminths detected in our study might reflect changes in the abundance of some arthropod species. For example, Trichoptera collected in rivers are more abundant in the dry season (Pescador-Rubio et al., 2002). Further studies focused on the examination of seasonal abundance of arthropod species and their endoparasites are warranted to understand seasonal dynamics of infection rate in Pteronotus species. An alternative explanation to the finparding of higher rates of infection when the abundance of intermediate hosts is lower is the “dilution effect” (Hamilton, 1971). The increase in the number of individuals of intermediate hosts leads to a decrease in an individual's probability to be parasitized (Krasnov, Stanko, & Morand, 2007; Ostfeld & Keesing, 2000). In other words, the probability of bats being infected by helminths decreases when the abundance of the intermediate host increases.

Our hypothesis of seasonal changes in endoparasite diversity was partly supported. Species richness was slightly higher in P. parnellii in the wet season, but it remained the same in P. davyi and P. personatus. However, following our prediction, the effective number of species was higher during the dry season for the 3 Pteronotus species. Dietary diversity of P. davyi and P. personatus increases in the dry season (Salinas-Ramos et al., 2015), when arthropod abundance is lower in the area (Andresen, 2005, Güizado and Casas-Andreu, 2011). It has been suggested that these bat species adopt a more generalist strategy when prey are limited and they become more selective when the insect abundance increases during the wet season (Salinas-Ramos et al., 2015). In the case of P. parnellii, it had the highest endoparasite richness and effective number of species of all insectivorous bats, which matches the more diverse diet reported in Chamela for P. parnellii compared to the diets of P. davyi and P. personatus all year long (Salinas-Ramos et al., 2015).

Host–parasite interactions could impact food webs and community structures (Mouritsen and Poulin, 2002, Sukhdeo, 2010) and the studies of the factors regulating helminth communities are complex (Lord et al., 2012). Our study examined the relationship between diversity and load of helminths and seasonal patterns of bat and abundance of potential intermediate hosts previously measured. We found heterogeneous patterns of this relationship that warrant further examination of seasonal abundance of intermediate hosts used as food by our focal bat species and of their helminth infection rates. These kinds of studies might be facilitated by the recent development of DNA libraries of arthropods and helminths in the study region (Fernández-Flores, Fernández-Triana, Martínez, & Zaldívar-Riverón, 2013; Prosser, Velarde-Aguilar, León-Règagnon, & Hebert, 2013).


This work was supported by grants given by Consejo Nacional de Ciencia y Tecnología (Conacyt, Red temática del código de barras de la vida, 2013–2015) to VLR; by Dirección General de Asuntos del Personal Académico (IN202113) to LGHM. VBSR thanks Programa de Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México and Conacyt for the scholarship received. We also thank Carlos A. González-Castro, Andrea Rebollo-Hernández and Alejandro Zaldívar-Riverón for their assistance in the field and the staff at the Estación de Biología Chamela, UNAM for hosting this work.


Aldridge, H. D. J. N., & Rautenbach, I. L. (1987). Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology, 56, 763–778. [ Links ]

Altizer, S., Harvell, D., & Friedle, E. (2003). Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology and Evolution, 18, 589–596. [ Links ]

Altringham, J. D. (1996). Bats biology and behavior. United Kingdom: Oxford University Press. [ Links ]

Andresen, E. (2005). Effects of season and vegetation type on community organization of dung beetles in a tropical dry forest. Biotropica, 37, 291–300. [ Links ]

Anderson, R. M., & May, R. M. (1978). Regulation and stability of host–parasite population interactions: I. Regulatory processes. Journal of Animal Ecology, 47, 219–247. [ Links ]

Anderson, R. M., & May, R. M. (1991). Infectious diseases of humans: dynamics and control. Oxford: Oxford University Press. [ Links ]

Appleton, C. C., & Gouws, E. (1996). The distribution of common intestinal nematodes along an altitudinal transect in KwaZulu-Natal, South Africa. Annals of Tropical Medicine Parasitology, 90, 181–188. [ Links ]

Arneberg, P., Skorping, A., Grenfell, B., & Read, A. F. (1998). Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London B: Biological Sciences, 265, 1283–1289. [ Links ]

Bell, G., & Burt, A. (1991). The comparative biology of parasite species diversity: intestinal helminths of freshwater fishes. Journal of Animal Ecology, 60, 1046–1063. [ Links ]

Blankespoor, H. D., & Ulmer, M. J. (1970). Helminths from six species of Iowa bats. Proceedings of the Iowa Academy of Sciences, 77, 200–206. [ Links ]

Brooks, D. R., & Hoberg, E. P. (2007). How will global climate change affect parasite–host assemblages? Trends in Parasitology, 23, 571–574. [ Links ]

Bullock, S. H. (1995). Plant reproduction in neotropical dry forest. In S. H. Bullock, H. A. Mooney, & E. Medina (Eds.), Seasonally dry tropical forests (pp. 277–303). Cambridge, UK: Cambridge University Press. [ Links ]

Bush, A. O., Fernández, J. C., Esch, G. W., & Seed, J. R. (2001). Parasitism. The diversity and ecology of animal parasites. United Kingdom: Cambridge University Press. [ Links ]

Caballero-Caballero, E., & Zerecero, C. (1942). Trematodos de los murciélagos de México II. Redescripción y posición sistemática de Distommum tubiporum Braun, 1900. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología, 13, 97–104. [ Links ]

Carvalho, A. R., & Luque, J. L. (2011). Seasonal variation in metazoan parasites of Trichiurus lepturus (Perciformes: Trichiuridae) of Rio de Janeiro, Brazil. Brazilian Journal of Biology, 71, 771–782. [ Links ]

Castaño-Meneses, G. (2014). Trophic guild structure of a canopy ants community in a Mexican tropical deciduous forest. Sociobiology, 61, 35–42. [ Links ]

Chitwood, B. G. (1938). Some nematodes from the caves of Yucatán. Publications of the Carnegie Institution of Washington, 491, 51–66. [ Links ]

Clarke, E. (2008). Descripción de la helmintofauna asociada a tres especies de murciélagos (Chiroptera: Mormoopidae) en el municipio de Apazapan, Veracruz (M.Sc. Thesis). Xalapa, Veracruz, México: Instituto de Ecología. A.C. [ Links ]

Coggins, J. R. (1988). Methods for the ecological study of bat endoparasites. In T. H. Kunz (Ed.), Ecological and behavioral methods for the study of bats (pp. 475–489). Washington, D.C.: Smithsonian Institute. [ Links ]

Coggins, J. R., Tedesco, J. L., & Rupprecht, C. E. (1982). Seasonal changes and overwintering of parasites in the bat, Myotis lucifugus (Le Conte), in Wisconsin Hibernaculum. The American Midland Naturalist, 107, 305–315. [ Links ]

Cuartas-Calles, C., & Muñoz-Arango, J. (1999). Nemátodos en la cavidad abdominal y el tracto digestivo de algunos murciélagos Colombianos. Caldasia, 21, 10–25. [ Links ]

Doi, H., & Yurlova, N. I. (2011). Host–parasite interactions and global climate oscillations. Parasitology, 1022–1028. [ Links ]

Esch, G. W., & Fernández, J. C. (1993). A functional biology of parasitism: ecological and evolutionary implications. Cambridge: Chapman & Hall. [ Links ]

Espericueta-Viera, J. C. (2012). Diversidad de murciélagos y sus nemátodos parásitos en el area de proteccion de flora y fauna Meseta de Cacaxtla Sinaloa, México (M.Sc. Thesis). Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Instituto Politécnico Nacional, Unidad Sinaloa. [ Links ]

Felis, K. J., & Esch, G. W. (2004). Community structure and seasonal dynamics of the helminth parasites in Lepomis cyanellus e L. macrochirus from Charles pond, North Carolina: host size and species as determinants of community structure. Journal of Parasitology, 90, 41–49. [ Links ]

Fernández-Flores, S. J. L., Fernández-Triana, J., Martínez, J. J., & Zaldívar-Riverón, A. (2013). DNA barcoding species inventory of Micrograstrinae wasps (Hymenoptera, Braconidae) from a Mexican tropical dry forest. Molecular Ecology Resources, 13, 1146–1150. [ Links ]

García-Vargas, F. (1995). Helmintos parásitos de murciélagos en la Estación de Biología Chamela, Jalisco (Bachelor Thesis). México, D.F.: Facultad de Ciencias, Universidad Nacional Autónoma de México. [ Links ]

García-Vargas, F., Osorio, S. D., & Pérez-Ponce de León, G. (1996). Helminths parasites of bats (Mormooopidae y Phyllostomidae) from the Estación de Biología Chamela, Jalisco State, Mexico. Bat Research News, 37, 7–8. [ Links ]

Gotz, F., Harf, R., Sommer, S., & Matthee, S. (2010). Effects of precipitation on parasite burden along a natural climatic gradient in southern Africa – implications for possible shifts in infestation patterns due to global changes. Oikos, 119, 1029–1039. [ Links ]

Güizado, R. M. A., & Casas-Andreu, G. (2011). Facultative specialization in the diet of the twelve-lined Whiptail, Aspidoscelis lineatissima. Journal of Herpetology, 3, 287–290. [ Links ]

Guzmán-Cornejo, C., García-Prieto, L., Pérez-Ponce de León, G., & Morales-Malacara, J. B. (2003). Parasites of Tadarida brasiliensis mexicana (Chiroptera: Molossidae) from arid regions of México. Comparative Parasitology, 70, 11–25. [ Links ]

Jost, L. (2006). Entropy and diversity. Oikos, 113, 363–375. [ Links ]

Hamilton, W. D. (1971). Geometry for the selfish herd. Journal of Theoretical Biology, 31, 295–311. [ Links ]

Hill, M. (1973). Diversity and evenness: a unifying notation and its consequences. Ecology, 54, 427–432. [ Links ]

Hudson, P. J., Cattadori, I. M., Boag, B., & Dobson, A. P. (2006). Climate disruption and parasite–host dynamics: patterns and processes associated with warming and the frequency of extreme climatic events. Journal of Helminthology, 80, 175–182. [ Links ]

Justine, J. L. (1989). Quatre nouvelles espèces de Capillaria (Nematoda, Capillariinae) parasites de Chiroptères du Gabon. Bulletin du Muséum national d’Histoire naturelle, Paris, 4° Série, 11, 535–561. [ Links ]

Kirschbaum, K., Perkins, S., & Gannon, M. R. (2009). Host–parasite interactions of tropical bats in Puerto Rico. Acta Chiropterologica, 11, 157–162. [ Links ]

Krasnov, B. R., Stanko, M., & Morand, S. (2007). Host community structure and infestation by ixodid ticks: repeatability, dilution effect and ecological specialization. Oecologia, 154, 185–194. [ Links ]

Lafferty, K. D. (1997). Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitology Today, 13, 251–255. [ Links ]

Lamothe-Argumedo, R. (1997). Manual de técnicas para preparar y estudiar los parásitos de animales silvestres. México, D.F.: A.G.T. Editor. [ Links ]

Leavings, S. C., & Windsor, D. M. (1984). Litter moisture content as a determinant of litter arthropod distribution and abundance during the dry season on Barro Colorado Island, Panama. Biotropica, 16, 125–131. [ Links ]

Lord, J. S., Parker, S., Parker, F., & Brooks, D. R. (2012). Gastrointestinal helminths of pipistrelle bats (Pipistrellus pipistrellus/Pipistrellus pygmaeus) (Chiroptera: Vespertilionidae) of England. Parasitology, 139, 366–374. [ Links ]

MacArthur, R. H. (1965). Patterns of species diversity. Biological Reviews, 40, 510–533. [ Links ]

Marcogliese, D. (2001). Implications of climate change for parasitism of animals in the aquatic environment. Canadian Journal of Zoology, 79, 1331–1352. [ Links ]

Marshall, M. E., & Miller, G. C. (1979). Some digenetic trematodes from Ecuadorian bats including five new species and one new genus. Journal of Parasitololgy, 65, 909–917. [ Links ]

May, R. M., & Anderson, R. M. (1978). Regulation and stability of host–parasite population interactions: II. Destabilizing processes. Journal of Animal Ecology, 47, 249–267. [ Links ]

McAllister, C. T., Bursey, C. R., & Dowler, R. C. (2007). Acanthatrium alicatai (Trematoda: Lecithodendriidae) from two species of bats (Chiroptera: Vespertilionidae) in southwestern Texas. Southwestern Association of Naturalists, 52, 597–600. [ Links ]

Méndez-Alonzo, R., Pineda-García, F., Paz, H., Rosell, J. A., & Olson, M. E. (2013). Leaf phenology is associated with soil water availability and xylem traits in tropical dry forest. Trees, 27, 745–754. [ Links ]

Moravec, F. (1982). Proposal of a new systematic arrangement of nematodes of the family Capillariidae. Folia Parasitologica, 28, 119–132. [ Links ]

Mouritsen, K. N., & Poulin, R. (2002). Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology, 124, 101–117. [ Links ]

Moyer, B. R., Drown, D. M., & Clayton, D. H. (2002). Low humidity reduces ectoparasite pressure: implications for host life history evolution. Oikos, 97, 223–228. [ Links ]

Muñoz, P., Fredes, F., Raffo, E., González-Acuña, D., Muñoz, L., & Cid, C. (2011). New report of parasite-fauna of the free-tailed bat (Tadarida brasiliensis, Geoffroy, 1824) in Chile. Veterinary Research Communications, 35, 61–66. [ Links ]

Nahhas, F., Yang, M., & Uch, R. S. (2005). Digenetic trematodes of Tadarida brasiliensis mexicana (Chiroptera: Molossidae) and Myotis californicus (Chiroptera:Vespertilionidae) from Northern California, U.S.A. Comparative Parasitology, 72, 196–199. [ Links ]

Nickel, P. A., & Hansen, M. F. (1967). Helminths of bats collected in Kansas, Nebraska and Oklahoma. The American Midland Naturalist, 78, 481–486. [ Links ]

Nogueira, M. R., de Fabio, S. P., & Peracchi, A. L. (2004). Gastrointertinal helminth parasitism in fruit-eating bats (Chiroptera: Stenodermatinae) from western Amazonian Brazil. Revista de Biología Tropical, 52, 1–5. [ Links ]

Ostfeld, R. S., & Keesing, F. (2000). Biodiversity and disease risk: the case of Lyme disease. Conservation Biology, 14, 722–728. [ Links ]

Peralta-Rodríguez, J. L., Caspeta-Mandujano, J. M., & Guerrero, J. A. (2012). A new spirurid (Nematoda) parasite from mormooopid bats in Mexico. Journal of Parasitology, 98, 1006–1009. [ Links ]

Pérez-Ponce de León, G., León-Régagnon, V., & García-Vargas, F. (1996). Helminth parasites of bats from Neotropical regions of Mexico. Bat Research News, 37, 3–6. [ Links ]

Pescador-Rubio, A., Rodríguez-Palafox, A., & Noguera, F. A. (2002). Diversidad y estacionalidad de Arthropoda. In F. A. Noguera, R. J. H. Vega, A. A. N. García, & A. M. Quesada (Eds.), Historia Natural de Chamela (pp. 183–201). México, D.F.: Instituto de Biología, Universidad Nacional Autónoma de México. [ Links ]

Pilosof, S., Dick, C. W., Korine, C., Patterson, B. D., & Krasnov, B. R. (2012). Effects of anthropogenic disturbance and climate on patterns of bat fly parasitism. PLoS ONE, 7, e41487. [ Links ]

Poulin, R., & Morand, S. (2004). Parasite biodiversity. Washington: Smithsonian Institution Press. [ Links ]

Pringle, E. G., Dirzo, R., & Gordon, D. M. (2012). Plant defence, herbivory, and the growth of Cordia alliodora trees and their symbiotic Azteca ant colonies. Oecologia, 170, 677–685. [ Links ]

Prosser, S. J., Velarde-Aguilar, M. G., León-Règagnon, V., & Hebert, P. D. N. (2013). Advancing nematodes barcoding: a primer cocktail for the cytochrome c oxidase subunit I gene from vertebrate parasitic nematodes. Molecular Ecology Resources, 13, 1108–1115. [ Links ]

Reiczigel, J., & Rózsa, L. (2005). Quantitative Parasitology 3.0. Budapest: Distributed by the authors. [ Links ]

Ricci, M. (1995). Trematode parasites of Italian bats. Parasitologia, 37, 199–214. [ Links ]

Rzedowski, J. (1981). Vegetación de México. Mexico: Limusa. [ Links ]

Salinas-Ramos, V. B., Montalvo, L. G. H., León-Regagnon, V., Arrizabalaga-Escudero, A., & Clare, E. L. (2015). Dietary overlap and seasonality in three species of mormoopid bats from a tropical dry forest. Molecular Ecology, 24, 5296–5307. [ Links ]

Shimalov, V. V., Demyanchik, M. G., & Demyanchik, V. T. (2002). A study of the helminth fauna of the bats (Mammalia, Chiroptera: Vespertillionidae) in Belarus. Parasitology Research, 88, 1011. [ Links ]

Šimková, A., Jarkovsky, J., Koubková, B., Barus, V., & Prokes, M. (2005). Associations between fish reproductive cycle and the dynamics of metazoan parasite infections. Parasitology Research, 95, 65–72. [ Links ]

Sukhdeo, M. V. K. (2010). Food webs for parasitologists: a review. Journal of Parasitology, 96, 273–284. [ Links ]

Tinsley, R. C., York, J. E., Everard, A. L. E., Stott, L. C., Chapple, S. J., & Tinsley, M. C. (2011). Environmental constraints influencing survival of an African parasite in a north temperate habitat: effects of temperature on egg development. Parasitology, 138, 1029–1038. [ Links ]

Ubelaker, J. E. (1970). Some observations on ecto- and endoparasites of Chiroptera. In B. H. Slaughter, & D. W. Walton (Eds.), About bats (pp. 247–261). Dallas: Southern Methodist University. [ Links ]

Vaucher, C. (1992). Revision of the genus Vampirolepis Spasskij, 1954 (Cestoda: Hymenolepididae). Memórias do Instituto Oswaldo Cruz, 87, 299–304. [ Links ]

Vaucher, C., & Durette-Desset, M. C. (1986). Trichostrongyloidea (Nematoda) parasites de chiroptères néotropicaux. I. Websternema parnellii (Webster, 1971) n. gen. n. comb. et Linustrongylus pteronoti n. gen. n. sp., parasites de Pteronotus au Nicaragua. Revue Suisse de Zoologie, 93, 237–246. [ Links ]

Whitaker, J. O. (1994). Food availability and opportunistic versus selective feeding in insectivorous bats. Bat Research News, 35, 75–77. [ Links ]

Wilson, D. E., & Reeder, D. M. (2005). Mammal species of the World. A taxonomic and geographic reference. Johns Hopkins University Press. [ Links ]

1Peer Review under the responsibility of Universidad Nacional Autónoma de México.

Received: October 18, 2016; Accepted: April 24, 2017

* Corresponding author: Valeria B. Salinas-Ramos, e-mail:

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License