SciELO - Scientific Electronic Library Online

 
vol.66 número4Biodiversity Assessment in Tecoma Species Using Micro-morphometric, Phytochemical and Molecular Descriptors Aided by Multivariate AnalysisScreening Method Synthesis of AgNPs Using Petroselinum crispum (parsley) Leaf: Spectral Analysis of the Particles and Antibacterial Study índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of the Mexican Chemical Society

versión impresa ISSN 1870-249X

J. Mex. Chem. Soc vol.66 no.4 Ciudad de México oct./dic. 2022  Epub 10-Abr-2023

https://doi.org/10.29356/jmcs.v66i4.1785 

Articles

Chemical Composition of Essential Oils of Dahlia imperialis (Asteraceae) Growing Wild in Costa Rica

José F. Cicció1  2  * 

Carlos Chaverri1  2 

1Escuela de Química Ciudad Universitaria Rodrigo Facio, Universidad de Costa Rica, San José, 11501-2060 Costa Rica.

2Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, San José, 11501-2060 Costa Rica.


Abstract

Dahlia is a genus of flowering plants of about 35 to 40 species, distributed mainly in Mesoamerica. The aim of this work was to study the chemical composition of the leaflet and capitulum essential oils of D. imperialis growing wild in Costa Rica. The essential oils were obtained by hydrodistillation in a modified Clevenger apparatus. The chemical composition of the oils was performed by capillary gas chromatography with a flame detector (GC-FID) and gas chromatography-mass spectrometry (GC-MS) using the retention indices on a DB-5 type capillary column in addition to mass spectral fragmentation patterns. A total of 131 compounds were identified, accounting for 96.5-99.3 % of the total amount of the oils. The major constituents in the leaflet oil were β-pinene (35.2 %), α-phellandrene (21.9 %), α-pinene (18.0 %), p-cymene (8.3 %), limonene (4.3 %) and γ-muurolene (3.9 %). The major constituents in the capitulum (flower head) oil were β-pinene (27.7 %), α-phellandrene (26.2 %), α-pinene (12.4 %), β-phellandrene (6.6 %), limonene (5.6 %), (E)-β-ocimene (2.9 %), and germacrene D (2.2 %). This is the first report about the chemical composition of essential oils from D. imperialis.

Keywords: Dahlia imperialis; essential oils; β-pinene; α-phellandrene; α-pinene; GC-MS

Resumen

Dahlia es un género de plantas floríferas que consta de 35 a 40 especies, distribuidas principalmente en Mesoamérica. El objetivo de este trabajo fue determinar la composición química de los aceites esenciales de hojuelas e inflorescencias de D. imperialis creciendo silvestre en Costa Rica. La extracción del aceite se efectuó por hidrodestilación con un equipo Clevenger modificado. La composición química del aceite se analizó mediante las técnicas de cromatografía gaseoso-líquida con detector de ionización de llama (GC-FID) y de cromatografía gaseoso-líquida acoplada a un detector selectivo de masas (GC-MS). Se utilizaron índices de retención obtenidos en una columna capilar tipo DB-5 y se compararon con los patrones de fragmentación de masas. Se identificaron en total 131 compuestos, correspondientes a 96.5-99.3 % de los constituyentes totales. Los componentes mayoritarios del aceite de los foliolos fueron β-pineno (35.2 %), α-felandreno (21.9 %), α-pineno (18.0 %), p-cimeno (8.3 %), limoneno (4.3 %) y γ-muuroleno (3.9 %). Los componentes mayoritarios del aceite de los capítulos florales fueron β-pineno (27.7 %), α-felandreno (26.2 %), α-pineno (12.4 %), β-felandreno (6.6 %), limoneno (5.6 %), (E)-β-ocimeno (2.9 %) y germacreno D (2.2 %). Este es el primer informe acerca de la composición química de aceites esenciales de D. imperialis.

Palabras clave: Dahlia imperialis; aceites esenciales; β-pineno; α-felandreno; α-pineno; GC-MS

Introduction

Asteraceae -the ‘daisy’ family- is one of the largest flowering plant families on Earth. It has a cosmopolitan distribution, more than 1600 genera, and ca. 24000 accepted species which are mostly herbaceous and shrubby plants, with few tree species [1,2]. This family is particularly well-represented in Mexico and Central America. The typical Asteraceous plant is characterized by composite flower heads (the capitula) and one-seeded achene fruits. Some species of diverse genera of Asteraceae are economically and ecologically important. Many plants are utilized in horticulture as ornamentals and as a source of insecticide substances, while others are of great significance as herbal medicines. Around the world, several species are used as a source of food, for example, Cynara cardunculus L., artichoke, Helianthus annuus L., sunflower, Lactuca sativa L., lettuce, Smallanthus sonchifolius (Poepp.) H. Rob., ‘yacón’ [3], and some are used as spices, like Artemisia dracunculus L., tarragon, and Tagetes lucida Cav., ‘pericón’ or ‘Mexican tarragon’ (in Mesoamerica, this plant can be a substitute for tarragon) [4,5].

Dahlia Cav. is a genus included in the tribe Coreopsideae, composed of about 35-40 species, native to the higher elevations of Mexico, Central America, and Colombia. Dahlia imperialis Roezl ex Ortgies is a large perennial herbaceous shrub about 2 to 6 m tall. The Aztecs named it ‘xicamiti’ and ‘acocoxóchitl’, the latter meaning water cane because its hollow stems are filled with water. Some regional hunters take advantage of this situation and use it as a source of water [6]. This plant has a distributional range from southern Mexico to northern South America [7]. In 1963, dahlia (Dahlia spp.) was declared the national flower of Mexico by presidential decree [8,9]. This wonder that nature gives us, according to Castro-Castro et al. [10] corresponds to the species D. coccinea Cav. which appears beautifully illustrated on folium 34r of the Libellus de medicinalibus Indorum herbis ('Little Book about Indians medicinal herbs'), known as ‘Códice de la Cruz - Badiano’, a manuscript dating from 1552, which compiles remedies for the treatment of various diseases, considered the oldest American herbalist [11-13]. In Costa Rica, D. imperialis is found in the uplands and wet mountains, occurring at elevations between 1300 and 2700 meters. It is common in roadsides and open areas and it is known vernacularly as ‘dalia’ and ‘catalina’ [14]. Leaves are 50-90 cm long, opposite bipinnate or tripinnate divided. Robust plants bear many suberect flower heads, usually on long peduncles. The ray flowers have pubescent tubes, pale pink or lavender to bright purple-colored and the disc flowers are yellow [7,15,16] (see Fig.1).

Fig. 1 Dahlia imperialis blooming in Costa Rica. (Photography by J. F. Cicció). 

In the Kekchí area of Guatemala, the young leaves of D. imperialis are cooked as greens and once boiled are drained before being consumed. They can be fried with lard or oil [17] and can be seasoned with pepita (Cucurbita spp. seeds) and chili. The leaflets can be eaten after being cooked with beans and eggs [18]. In Honduras, the water accumulated in the stems is taken as a remedy against urinary tract infections, kidney troubles, and for cleansing the eyes [19].

Scarce phytochemical investigations have been performed on D. imperialis. Acetylenic substances have been isolated and identified from roots and tubers [20]; several flavonoids were determined by Giannasi [21]. From leaves, Booth et al. [22] and more recently Castro-Osorio [23] reported a nutritional characterization of samples from Guatemala (proximate composition, mineral content, and total carotenoid amount). One of the most distinctive features in the biochemistry of the Asteraceae is the production of important storage polysaccharides of D-fructose instead of D-glucose. These unusual polysaccharides are known as fructans. They are found in nature as oligosaccharides with up to 10 units and as polysaccharides with up to 50 units. The best-known fructan is inulin (used pharmaceutically as a dietary fiber with prebiotic benefits, and for patients with metabolic disorders) isolated for the first time from the tubers of Inula helenium L. in the 19th century [24-26]. In Colombia, Bernal et al. [27] extracted and isolated inulin from the tubers of D. imperialis, with a yield of 13.8% on a dry basis. For a recent review of its physiological functions and applications in the pharmaceutical industry, see Wan et al. [28].

To the best of our knowledge, no previous reports on the chemical composition of essential oils of D. imperialis have been published. This prompted us to carry out analyses of the chemical composition of leaflet and capitulum oils of this species, mainly because it has been used as a traditional food source in some Mesoamerican regions.

Experimental

Plant material

The aerial parts of Dahlia imperialis were collected during the flowering stage in December 2017 and January 2018, in the locality of San Rafael de Montes de Oca, province of San José (9º56'38"N, 84º01'19"W), Costa Rica, at an elevation of 1310 m. The plant was identified by Carlos O. Morales, School of Biology, University of Costa Rica (UCR). A voucher specimen (CCC20-2711) was deposited in the Herbarium of the UCR.

Isolation of the essential oils

The oils were isolated from fresh plant material by hydrodistillation at atmospheric pressure, for 3 h using a circulatory Clevenger-type apparatus. The distilled oils were collected and dried over anhydrous sodium sulfate, filtered, and stored between 0 (C and 10 (C in the dark, until further analysis. The essential oil yields (v/w) were 0.14 % (leaflet), and 0.08 % (capitulum).

Gas chromatography (GC-FID)

The collected essential oils were analyzed by gas chromatography with a flame ionization detector (GC-FID) using a Shimadzu GC-2014 gas chromatograph. The data were obtained on a 5 % phenyl 95 % dimethylpolysiloxane type fused silica capillary column (30 m x 0.25 mm; film thickness 0.25 μm; MDN-5S, Supelco). The GC integrations were performed with a LabSolutions®, Shimadzu GC Solution Chromatography Data System software version 2.3. The operating conditions used were carrier gas N2, flow 1.0 mL/min; oven temperature program: (60 to 280 °C) at 3 °C/min, 280 °C (2 min); sample injection port temperature 250 °C; detector temperature 280 °C; split 1:60.

Gas chromatography-mass spectrometry (GC-MS)

The analysis by gas chromatography coupled to the mass selective detector (GC-MS) was carried out using a Shimadzu GCMS-QP2010 SE apparatus and GCMSsolution® software version 4.20, with Wiley 139, NIST computerized databases. The data were obtained on a 5% phenyl 95% dimethylpolysiloxane equivalent fused silica capillary column (30 m x 0.25 mm; film thickness 0.25 μm; SH-Rxi-5Sil MS, low polarity crossbond® silarylene phase). The operating conditions used were carrier gas He, flow 1.4 mL/min; oven temperature program: (60 to 280 °C) at 3 °C/min; sample injection port temperature 250 °C; detector temperature 260 °C; ionization voltage: 70 eV; ionization current 60 μA; scanning speed 0.5 s over 35 to 400 Da range; split 1:70.

Compound identification

Identification of individual oil components was based on a comparison of their linear retention indices which were calculated in relation to a homologous series of n-alkanes, on a 5 % phenyl 95 % dimethylpolysiloxane type column [29], and by comparison of their mass spectral fragmentation patterns with those published in the literature [30-32], or those of our own database or comparing their mass spectra with those available in the computerized databases (NIST 107 and Wiley 139) or in a web source [33]. To obtain the retention indices for each peak, 0.1μL of the n-alkane mixture (Sigma, C8-C32 standard mixture) was injected under the same experimental conditions reported above. Integration of the total chromatogram (GC-FID), expressed as area percent, without correction factors, has been used to obtain quantitative compositional data.

Results and discussion

The chemical composition of leaflet and capitulum oils of Dahlia imperialis from Costa Rica is summarized in Table 1. Eighty-six compounds were identified in the essential oil from leaflets. This oil consisted largely of monoterpene hydrocarbons (91.4 %) with a lesser amount of sesquiterpene hydrocarbons (5.5 %) and a minute amount (1.9 %) of oxygenated derivatives (Fig. 2). The major constituents of leaflet oil were β-pinene (35.2 %), α-phellandrene (21.9 %), α-pinene (18.0 %), p-cymene (8.3 %), limonene (4.3 %), and γ-muurolene (3.9 %).

Table 1 Chemical composition of essential oils isolated from leaflets and capitula of Dahlia imperialis from Costa Rica. 

Compounda RTb (min) RIc Lit. RId Class Leaflet (%) Capitulum (%) I. M.e
(E)-Hex-2-enal 4.24 849 846 A 0.2 1,2
(Z)-Hex-2-en-1-ol 4.29 858 859 A 0.1 1,2
Hexanol 4.46 861 863 A tf 1,2
Tricyclene 5.89 923 921 M t 1,2
α-Thujene 6.02 927 924 M 0.1 1,2
α-Pinene 6.19 934 932 M 18.0 12.4 1,2,3
α-Fenchene 6.47 942 945 M t 1,2
Camphene 6.62 947 946 M 0.2 0.2 1,2,3
Sabinene 7.53 973 969 M 1.0 1.9 1,2
β-Pinene 7.78 975 974 M 35.2 27.7 1,2,3
Myrcene 7.91 989 988 M 0.9 1.0 1,2
Mesitylene 8.20 994 994 B t 1,2
α-Phellandrene 8.43 1007 1002 M 21.9 26.2 1,2
δ-2-Carene 8.49 1008 1000 M t 1,2
α-Terpinene 8.86 1016 1014 M 0.2 1,2
p-Cymene 8.95 1024 1020 M 8.3 0.2 1,2
Limonene 9.22 1025 1024 M 4.3 5.6 1,2,3
β-Phellandrene 9.36 1029 1025 M t 6.6 1,2
(Z)-β-Ocimene 9.58 1036 1032 M t t 1,2
Benzene acetaldehyde 9.85 1043 1036 B t 1,2
(E)-β-Ocimene 9.96 1046 1044 M 0.8 2.9 1,2
γ-Terpinene 10.37 1057 1054 M 0.3 0.4 1,2
cis-Sabinene hydrate 10.75 1067 1065 M t t 1,2
Terpinolene 11.62 1089 1086 M 0.2 0.3 1,2
p-Cymenene 11.65 1090 1089 M t t 1,2,3
Linalool 11.62 1092 1095 OM t 1,2,3
trans-Sabinene hydrate 11.79 1095 1098 OM t 1,2
α-Fenchocamphorone 12.26 1105 1104 OM t 1,2
α-Pinene oxide 12.23 1107 1099 OM t 1,2
endo-Fenchol 12.57 1116 1114 OM t 1,2
exo-Fenchol 12.70 1117 1118 OM t 1,2
cis-p-Menth-2-en-1-ol 12.95 1123 1118 OM 0.1 0.1 1,2
5,8-Menthatriene 13.10 1131 1135 M t 1,2
trans-Pinocarveol 13.20 1131 1135 OM t t 1,2
trans-p-Menth-2-en-1-ol 13.65 1139 1136 OM 0.1 t 1,2
trans-Verbenol 13.73 1141 1140 OM 0.1 1,2
Camphene hydrate 14.02 1147 1145 OM t t 1,2
β-Pinene oxide 14.10 1150 154 OM t 1,2
(E)-Non-2-enal 14.17 1151 1157 A 0.1 1,2
1-(1,4-Dimethyl-3-cyclohexen-1-yl)-ethanone 14.44 1156 1152 OM t 1,2
Terpinen-4-ol 15.36 1179 1174 OM 0.5 0.5 1,2,3
Dill ether 15.66 1186 1184 OM t 1,2
trans-p-Menth-1(7),8-dien-2-ol 15.66 1186 1187 OM 0.1 1,2
α-Terpineol 15.96 1193 1186 OM 0.1 0.2 1,2,3
cis-Piperitol 16.20 1194 1195 OM t t 1,2
α-Phellandrene epoxide 16.60 1204 1202g OM t 0.2 1,2
Decanal 16.72 1208 1201 A t 1,2,3
trans-Piperitol 16.79 1210 1207 OM t t 1,2
β-Cyclocitral 17.19 1223 1217 OM t t 1,2
Nerol 17.68 1230 1227 OM t 1,2
Thymol methyl ether 17.80 1231 1232 OM t t 1,2
Carvacrol methyl ether 18.11 1240 1241 OM t t 1,2
Piperitone 18.55 1248 1249 OM t 1,2
trans-Linalool oxide acetate (pyranoid) 20.39 1288 1287 OM t 1,2
Bornyl acetate 20.48 1288 1287 OM t 0.1 1,2
trans-Pinocarvyl acetate 20.75 1296 1297 OM t t 1,2
Carvacrol 20.80 1297 1298 OM t 1,2
6-Hydroxy-carvotanacetone 21.24 1309 1309 OM 0.1 1,2
(2E,4E)-Deca-2,4-dienal 21.60 1314 1315 A t 1,2
cis-2,3-Pinanediol 21.69 1319 1318 OM 0.4 0.2 1,2
(Z)-Hex-3-enyl tiglate 21.65 1321 1319 A t 1,2
iso-Dihydro carveol acetate 22.15 1329 1326 OM t 1,2
δ-Elemene 22.50 1337 1335 S 0.3 1,2
α-Cubebene 22.87 1346 1345 S t 1,2
Neryl acetate 23.50 1362 1359 OM t 1,2
α-Copaene 23.52 1371 1371 S t 1,2
Geranyl acetate 23.74 1374 1379 OM t 1,2
β-Bourbonene 24.23 1386 1387 S t 1,2
β-Cubebene 24.58 1388 1387 S t 0.1 1,2
β-Elemene 25.02 1399 1389 S 0.1 0.3 1,2
(E)-Caryophyllene 26.13 1421 1417 S 0.9 1.5 1,2,3
γ-Elemene 26.50 1427 1435 S 0.1 1,2
β-Copaene 26.52 1433 1430 S t 1,2
β-Gurjunene 26.70 1429 1431 S 0.1 1,2
α-Humulene 27.55 1453 1452 S 0.2 t 1,2,3
(E)-β-Farnesene 27.27 1459 1454 S 0.1 1.0 1,2
epi-Bicyclosesquigermacrene 28.09 1464 1467 S t 1,2
γ-Muurolene 28.64 1478 1478 S 3.9 t 1,2
Germacrene D 28.69 1486 1484 S 2.2 1,2
γ-Amorphene 29.35 1494 1495 S t 1,2
Bicyclogermacrene 29.45 1496 1500 S 0.2 0.3 1,2
α-Muurolene 29.75 1501 1500 S t t 1,2
(E,E)-α-Farnesene 29.94 1509 1505 S t 1,2
Germacrene A 30.29 1509 1508 S 0.1 1,2
γ-Cadinene 30.33 1515 1513 S t t 1,2
δ-Cadinene 30.60 1522 1522 S 0.1 0.1 1,2,3
10-epi-cis-Dracunculifoliol 31.46 1539 1540 OS t 1,2
Elemol 31.73 1547 1548 OS t 1,2
Germacrene B 31.95 1561 1559 S 0.1 1,2
(E)-Nerolidol 32.21 1561 1561 OS t 1,2,3
(Z)-Hex-3-enyl benzoate 32.49 1568 1565 B t 1,2
Spathulenol 32.82 1578 1577 OS 0.4 1,2
Caryophyllene oxide 33.13 1583 1582 OS 0.2 1,2
Globulol 33.26 1590 1590 OS 0.1 0.1 1,2
Viridiflorol 33.58 1593 1592 OS t t 1,2
Cubeban-11-ol 33.69 1596 1595 OS t 1,2
Ethyl dodecanoate 33.83 1596 1594 A t 1,2
Widdrol 33.87 1599 1599 OS t 1,2
Humulene epoxide II 34.22 1610 1608 OS t 1,2
Junenol 34.56 1622 1627 OS t 1,2
1-epi-Cubenol 34.79 1625 1627 OS t 1,2
epi-α-Cadinol (T-cadinol) 35.08 1638 1638 OS 0.1 t 1,2
epi-α-Muurolol (T-muurolol) 35.31 1643 1640 OS 0.2 1,2
β-Eudesmol 35.84 1654 1649 OS 0.1 1,2
α-Cadinol 35.99 1658 1652 OS 0.2 1,2
α-Bisabolol 36.90 1683 1685 OS t 1,2
Pentadecanal 38.09 1712 1710 A 0.1 1,2
Hexadecanoic acid 47.61 1967 1973 A 0.1 0.1 1,2
Ethyl hexadecanoate 48.17 1994 1993 A t t 1,2
(E,E)-Geranyl linalool 49.16 2031 2026 OS t 1,2
Octadecanol 50.76 2081 2077 A t 1,2
Methyl linoleate 50.94 2087 2095 A t 1,2
Methyl linolenate 51.40 2093 2095 A t 1,2
Heneicosane 51.48 2100 2100 A t 0.3 1,2,3
(E)-Phytol 51.83 2116 2111h D t 1,2
Linoleic acid 52.35 2134 2132 A 0.1 1,2
Linolenic acid 52.73 2142 2143 A 0.1 1,2
Ethyl linoleate 53.37 2163 2159 A t 0.2 1,2
Ethyl linolenate 53.66 2171 2169 A t 0.1 1,2
Ethyl octadecanoate 54.34 2193 2196 A t 1,2
Docosane 54.53 2200 2200 A t t 1,2,3
(Z)-Tricos-9-ene 56.58 2271 2272 A t 1,2
Eicosanol 57.00 2280 2281 A t 1,2
Tricosane 57.50 2300 2300 A t 1.0 1,2,3
Tetracosane 60.36 2400 2400 A t 0.1 1,2,3
Docosanol (Behenic alcohol) 62.67 2486 2498 A 0.1 1,2
Pentacosane 63.14 2500 2500 A t 0.4 1,2,3
Hexacosane 65.80 2600 2600 A t 1,2,3
Docosyl acetate 66.12 2612 2611 A t 1,2
Heptacosane 68.17 2700 2700 A 0.1 1,2,3
Class components
Monoterpene hydrocarbons (M) 91.4 85.4
Oxygenated monoterpenes (OM) 1.2 1.6
Sesquiterpene hydrocarbons (S) 5.5 6.2
Oxygenated sesquiterpenes (OS) 0.7 0.7
Aliphatics (A) 0.5 2.6
Bencenoids (B) t
Diterpenes (D) t t
Identified components (%) 99.3 96.5

aCompounds listed in order of elution from 5 % phenyl 95 % dimethylpolysiloxane type column. bRT = Retention time (min). cRI = Retention index relative to C8-C32 n-alkanes on the 5 % phenyl 95 % dimethylpolysiloxane type column. dLit. RI = DB-5 [32,33]. eI.M. = Identification method: 1 = Experimental retention index; 2 = MS spectra; 3 = Standard. ft = Traces (<0.05 %). g[34]; h[35]. Major compounds are in boldface.

Fig. 2 GC-MS chromatogram (TIC) of Dahlia imperialis leaflet oil: 1. α-pinene; 2. β-pinene; 3. α-phellandrene; 4. p-cymene 5. limonene; 6. (E)-β-ocimene; 7. terpinen-4-ol; 8. (E)-caryophyllene; 9. γ-muurolene. 

Ninety-six constituents were identified in the essential oil from capitula. As can be seen, also monoterpene hydrocarbons (85.4 %) with a lesser amount of sesquiterpene hydrocarbons (6.2 %) were the most represented classes of compounds. The major constituents of the capitulum oil were β-pinene (27.7 %), α-phellandrene (26.2 %), α-pinene (12.4 %), β-phellandrene (6.6 %), limonene (5.6 %), (E)-β-ocimene (2.9 %), and germacrene D (2.2 %) (Fig. 3).

Fig. 3 GC-MS chromatogram (TIC) of Dahlia imperialis capitulum oil: 1. α-pinene; 2. β-pinene; 3. α-phellandrene; 4. limonene; 5. β-phellandrene; 6. (E)-β-ocimene; 7. terpinen-4-ol; 8. (E)-caryophyllene; 9. germacrene D. 

The pinane class of monoterpenes accounts for more than 50 % of the total leaflet oil composition, and more than 40 % of the capitulum oil composition with α-pinene and β-pinene occurring as major components. The principal source of these two compounds is turpentine (an oil obtained from pine trees) purified as a by-product in the Kraft paper-making process. These compounds are widespread in essential oils of conifers, as well as in essential oils of diverse genera of plants growing in Costa Rica like Schinus molle L., ‘pirul’, Anacardiaceae [36], Smallanthus maculatus (Cav.) H. Rob., ‘tora’, and S. quichensis (J.M. Coult.) H. Rob., ‘cacamuca’, Asteraceae [37,38]; Ocotea austinii C.K. Allen, O. morae Gómez-Laur. and Povedadaphne quadriporata W.C. Burger, ‘ira rosa’, Lauraceae [39-41]; and Manekia naranjoana (C.DC.) Callejas ex N. Zamora, Hammel & Grayum, Piperaceae [42], where these two compounds occur in large amounts. α-Pinene has a sharp and fresh pine odor and industrially it is converted to synthetic pine oil used as a solvent and as a constituent of several disinfectants. α-Pinene is used as a building block for the synthesis of various compounds used in the flavor and fragrance industry and for the synthesis of sustainable biopolymers [43]. The therapeutic potential and biological activity of α- and β-pinenes have been extensively studied and summaries are found in the recent reviews of Salehi et al. [44] and Allenspach & Steuer [45]. α-Phellandrene has a mint-citrusy and herbaceous flavor whereas its isomer β-phellandrene has a peppery-minty and slightly citrusy. Both are useful components of fragrances for soap and bath formulations. p-Cymene is an aromatic monoterpene naturally occurring in essential oils of plants used as condiments such as Cuminum cyminum L., cumin, Apiaceae [46], Thymus vulgaris L., thyme, Lamiaceae [47], and Origanum spp., oregano, Lamiaceae [48]. This compound is used as an industrial intermediate in fine chemical synthesis. The biological benefits and pharmacological properties of p-cymene have been reviewed recently by Balahbib et al. [49].

The major constituents of the essential oils of Dahlia imperialis [α- and β-pinene, α-phellandrene, p-cymene, limonene, and (E)-caryophyllene] are ingredients that contribute to the aroma and flavor of several spices used in the food industry. These compounds were approved by the United States Food and Drug Administration (FDA) as food additives, and they are generally granted the safe (GRAS) status by FDA classification] [50].

The leaf, flower, stem, and root essential oil compositions of Dahlia pinnata from China have been reported [51]. The major volatile compounds of the leaf essential oil were butyric acid (44.2 %) and methallyl cyanide (7.0 %) whereas the main constituents of the flower essential oil were 4-terpineol (25.7 %), methallyl cyanide (14.0 %) and limonene (10.5 %). Maman et al. [52] reported the chemical composition of the flower oil of Dahlia ‘Eveline’, a member of decorative Dahlias. They found that the major constituents were the phenylpropanoids anethole (82.8 %) and estragole (4.1 %).

The leaflet and capitulum essential oil compositions of Dahlia imperialis from Costa Rica presented considerable differences and they cannot be compared with studied oils because, among others, they do not contain nitriles or phenylpropanoids. To have a better understanding of the chemical and biological capacities of plants of this genus, it is desirable to conduct much more research, especially on wild plant populations.

The leaflets and flower heads (capitula) of Dahlia imperialis from Costa Rica produce monoterpenoid-rich essential oils whose compositions are dominated by β-pinene (27.7-35.2 %), α-phellandrene (12.4-21.9 %), α-pinene (12.4-18.0 %), p-cymene (0.2-8.3 %), limonene (4.3-5.6 %) and β-phellandrene (t-6.6 %). A total of 124 constituents were identified in the oils. Considering the chemical nature of principal compounds that constitutes the volatile fraction of this plant, its consumption as a leafy green vegetable seems to be safe.

Acknowledgments

The authors are grateful to the Escuela de Química and Vicerrectoría de Investigación, Universidad de Costa Rica, for financial support (Project No. 809-B1-190) and to C. O. Morales (Escuela de Biología, Universidad de Costa Rica) for the species identification and, critically reading the manuscript.

References

1. Funk, V. A.; Susanna, A.; Stuessy, T. F.; Robinson H. Classification of Compositae. In Systematics, evolution, and biogeography of Compositae; Funk, V. A.; Susanna, A.; Stuessy, T. F.; Bayer, R. J., Eds.; IAPT: Vienna, Austria, 2009; Chap. 11, 171-189. [ Links ]

2. Panero, J. L.; Crozier, B. S. Asteraceae. Sunflowers, daisies. Version 27 January 2012. http://tolweb.org/Asteraceae/20780/2012.01.27 in The Tree of Life Web Project, http://tolweb.org/Links ]

3. Delgado, G. T.; Tamashiro, W. M.; Maróstica Junior, M. R.; Pastore, G. M. Plant Foods Hum. Nutr. 2013, 68, 222-228. DOI: https://doi.org/10.1007/s11130-013-0362-0. [ Links ]

4. Cicció, J. F. Rev. Biol. Trop. (Int. J. Trop. Biol.). 2004, 52, 853-857. Retrieved from https://revistas.ucr.ac.cr/index.php/rbt/article/view/15500. [ Links ]

5. Lim, T. K. Edible medicinal and non-medicinal plants. Vol. 7, Flowers. Springer: Dordrecht, Netherlands, 2014. DOI: https://doi.org/10.1007/978-94-007-7395-0. [ Links ]

6. Azurdia, C. Plantas mesoamericanas subutilizadas en la alimentación humana. El caso de Guatemala: una revisión del pasado hacia una solución actual. Consejo Nacional de Áreas Protegidas y Universidad de San Carlos de Guatemala, Dirección General de Investigación. Documento técnico No. 11-2016, 58-59. [ Links ]

7. Sorensen, P. D. Rhodora. 1969, 71, 309-365, 367-416. [ Links ]

8. Mera-Obando, L. M.; Bye-Boettl, R. Revista Digital Universitaria. 2006, 7, 3-11. Retrieved from http://www.revista.unam.mx/vol.7/num11/art90/nov_art90.pdf. [ Links ]

9. Mejía-Muñoz, J. M.; Luna-García, I. D.; Jiménez-Ruiz, E. F.; Sosa-Montes, E.; Flores-Espinosa, C.; Treviño-De Castro, G.; Reyes-Santiago, J. Acta Hortic. 2020, 1288, 103-107. DOI: https://doi.org/10.17660/ActaHortic.2020.1288.15. [ Links ]

10. Castro-Castro, A.; Rodríguez, A.; Vargas-Amado, G.; Harker, M. Rev. Mex. Biodivers. 2012, 83, 347-358. DOI: http://dx.doi.org/10.22201/ib.20078706e.2012.2.941. [ Links ]

11. Códice Badiano. Biblioteca Nacional de Antropología e Historia. INAH. México. Retrieved from: https://mediateca.inah.gob.mx/repositorio/islandora/object/codice:851#page/1/mode/2up Nueva edición digitalizada del Códice Badiano. Fitoterapia.net. Retrieved from: https://www.fitoterapia.net/noticias/nueva-edicion-digitalizada-codice-badiano-13898.html. [ Links ]

12. Mancheva, D. Libellus de medicinalibus Indorum herbis: la vida secreta de los nombres de las plantas de origen naua. In: De los descubrimientos a las taxonomías. La botánica y la zoología en la lengua española del Renacimiento a la Ilustración, De Beni, M., Ed.; Universitas Studiorum, Mantova, Italy, 2015, 21-45. [ Links ]

13. Reyes-Chilpa, R.; Guzmán-Gutiérrez, S. L.; Campos-Lara. M.; Bejar, E.; Osuna-Fernández, H. R.; Hernández-Pasteur, G. Bol. Latinoam. Caribe Plantas Med. Aromat. (BLACPMA). 2021, 20, 1-27. DOI: https://doi.org/10.37360/blacpma.21.20.1.1. [ Links ]

14. León, J.; Poveda, L. J. In Sánchez-Vindas, P. E. Ed., Nombres comunes de las plantas en Costa Rica, Editorial Guayacán: San José, Costa Rica, 2000. [ Links ]

15. Nash, D. L. Tribe V, Heliantheae. In Flora of Guatemala, Part XII, Nash, D. L.; Williams, L. O. Eds.; Fieldiana, Bot. 1976, 24, 503-570. [ Links ]

16. Hammel, B. Plantas ornamentales nativas de Costa Rica, Instituto Nacional de Biodiversidad (INBio): Santo Domingo de Heredia, Costa Rica, 1999. [ Links ]

17. Booth, S.; Johns, T.; López-Palacios, C. Y., Ecol. Food Nutr. 1993, 31, 127-145. DOI: https://doi.org/10.1080/03670244.1993.9991354. [ Links ]

18. Chízmar, C. (Ed.). Plantas comestibles de Centroamérica, Instituto Nacional de Biodiversidad, INBio: Santo Domingo de Heredia, Costa Rica, 2009. [ Links ]

19. House, P. R.; Lagos-Witte, S.; Ochoa, L.; Torres, C.; Mejía, T.; Rivas, M. Plantas medicinales comunes de Honduras, UNAH, CIMN-H, CID/CIIR, GTZ: Tegucigalpa, M.D.C., Honduras, 1995. [ Links ]

20. Lam, J. Phytochemistry. 1971, 10, 2227-2228. DOI: https://doi.org/10.1016/S0031-9422(00)97228-5. [ Links ]

21. Giannasi, D. E. Bull. Torrey Bot. Club. 1975, 102, 404-412. DOI: https://doi.org/10.2307/2484767. [ Links ]

22. Booth, S.; Bressani, R.; Johns, T. J. Food Compos. Anal. 1992, 5, 25-34. [ Links ]

23. Castro-Osorio, V. M. Caracterización nutricional, sensorial y antropológica de la hoja de tsoloj (Dahlia imperialis) para el consumo humano. Tesis de Maestría. Universidad de San Carlos de Guatemala, Guatemala, 2016. Retrieved from: http://biblioteca.usac.edu.gt/tesis/06/06_3978.pdf. [ Links ]

24. Heywood, V. H.; Harborne, J. B.; Turner, B. L. An overture to the Compositae. In The biology and chemistry of the Compositae. Heywood, V. H.; Harborne, J. B.; Turner, B. L. Eds.; Academic Press Inc.: London, UK, 1977; Vol. 1, 17-18. [ Links ]

25. Evans, W. C. Trease and Evans Pharmacognosy, W. B. Saunders Ltd.: London, UK, 2002. [ Links ]

26. Wouters, R. Inulin. In Food stabilisers, thickeners, and gelling agents, Imeson, A. Ed.; Wiley-Blackwell: Oxford, UK, 2010; Chap. 10, 180-197. [ Links ]

27. Bernal, B. H.; Calle, J.; Duarte, E. O.; Pinzón, R.; Velásquez, M. Rev. Col. Cienc. Quím. Farm. 2005, 34, 122-125. [ Links ]

28. Wan, X.; Guo, H.; Liang, Y.; Zhou, C.; Liu, Z.; Li, K.; Niu, F.; Zhai, X.; Wang, L. Carbohydrate Polymers. 2020, 246, 116589. DOI: https://doi.org/10.1016/j.carbpol.2020.116589. [ Links ]

29. van den Dool, H.; Kratz, P. D. J. Chromatogr. A 1963, 11, 463-471. DOI: https://doi.org/10.1016/s0021-9673(01)80947-x. [ Links ]

30. Stenhagen, E.; Abrahamsson, S.; McLafferty, F. W. Registry of Mass Spectral Data, John Wiley & Sons: New York, NY, USA, 1974. [ Links ]

31. Swigar, A. A.; Silvertein, R. M. Monoterpenes. Aldrich Chem. Co.: Milwaukee, WI, USA, 1981. [ Links ]

32. Adams, R. P. Identification of Essential Oil Components by Gas Chromatography/ Quadrupole Mass Spectrometry, 4th ed.; Allured: Carol Stream, IL, USA, 2007. [ Links ]

33. Wallace, W. E. (Dir.). 2019. Mass spectra (by NIST Mass Spec Data Center). In Linstrom, P. J.; Mallard, W. G. (Eds.), Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, MD, 20899, Available from http://webbook.nist.gov. [ Links ]

34. Cole, R. A.; Haber, W. A.; Setzer, W. N. Biochem. Syst. Ecol. 2007, 35, 877-886. DOI: https://doi.org/10.1016/j.bse.2007.06.013. [ Links ]

35. Vujisić, L. J.; Vučković, I.; Tešević, V.; Đoković, D.; Ristić, M. S.; Janaćković, P.; Milosavljević, S. Flavour Fragr. J. 2006, 21, 458-461. DOI: https://doi.org/10.1002/ffj.1681. [ Links ]

36. Díaz, C.; Quesada, S.; Brenes, O.; Aguilar, G.; Cicció, J. F. Nat. Prod. Res. 2008, 22, 1521-1534. DOI: https://doi.org/10.1080/14786410701848154. [ Links ]

37. Cicció, J. F. J. Essent. Oil Res. 2004, 16, 353-355. DOI: https://doi.org/10.1080/10412905.2004.9698740. [ Links ]

38. Chaverri, C.; Cicció, J. F. Bol. Latinoam. Caribe Plantas Med. Aroma t. (BLACPMA). 2015, 14, 355-363. Retrieved from https://www.blacpma.usach.cl/sites/blacpma/files/articulo_2_-_968_-_355_-_363.pdf. [ Links ]

39. Chaverri, C.; Cicció, J. F. J. Essent. Oil Res. 2007, 19, 439-443. DOI: https://doi.org/10.1080/10412905.2007.9699946. [ Links ]

40. Chaverri, C.; Díaz, C.; Cicció, J. F. J. Braz. Chem. Soc. 2011, 22, 741-745. DOI: https://doi.org/10.1590/S0103-50532011000400018. [ Links ]

41. Cicció, J. F.; Chaverri, C. Quím. Nova 2008, 31, 605-609. DOI: https://doi.org/10.1590/S0100-40422008000300027. [ Links ]

42. Chaverri, C.; Díaz, C.; Cicció, J. F. Nat. Prod. Commun. 2011, 6, 145-148. DOI: https://doi.org/10.1177/1934578X1100600135. [ Links ]

43. Winnacker, M. Angew. Chem. Int. Edit. 2018, 57, 14362-14371. DOI: https://doi.org/10.1002/anie.201804009. [ Links ]

44. Salehi, B.; Upadhyay, S.; Orhan, I. E.; Jugran, A. K.; Jayaweera, S. L. D.; Dias, D. A.; Sharopov, F.; Taheri, Y.; Martins, N.; Baghalpour, N.; Cho, W. C.; Sharifi-Rad, J. Biomolecules. 2019, 9, 738. DOI: https://doi.org/10.3390/biom9110738. [ Links ]

45. Allenspach, A.; Steuer, C. Phytochemistry. 2021, 190, 112857. DOI: https://doi.org/10.1016/j.phytochem.2021.112857. [ Links ]

46. Bettaieb, I.; Bourgou, S.; Sriti, J.; Msaada, K.; Limam, F.; Marzouk, B. J. Sci. Food Agric. 2011, 91, 2100-2107. DOI: https://doi.org/10.1002/jsfa.4513 [ Links ]

47. Satyal, P.; Murray, B. L.; McFeeters, R. L.; Setzer, W. N. Foods. 2016, 5, 70. DOI: https://doi.org/10.3390/foods5040070. [ Links ]

48. Başer, K. H. C.; Özek, T.; Tűmen, G.; Sezic, E. J. Essent. Oil Res . 1993, 5, 619-623. DOI: https://doi.org/10.1080/10412905.1993.0698294. [ Links ]

49. Balahbib, A.; El Omari, N.; El Hachlafi, N.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabbti, H. N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Food Chem. Toxicol. 2021, 153, 112259. DOI: https://doi.org/10.1016/j.fct.2021.112259. [ Links ]

50. Adams, T. B.; Gavin, C. L.; McGowen, M. M.; Waddell, W. J. S.; Cohen, M.; Feron, V. J.; Marnett, L. J.; Munro, I. C.; Portoghese, P. S.; Rietjens, I. M. C. M.; Smith. R. L. Food Chem. Toxicol. 2011, 49, 2471-2494. DOI: https://doi.org/10.1016/j.fct.2011.06.011. [ Links ]

51. Wang, D. C.; Qiu, D. R.; Shi, L. N.; Pan, H. Y.; Li, Y. W.; Sun, J. Z.; Xue, Y. J.; Wei, D. S.; Li, X.; Zhang, Y. M.; & Qui, J. C. Nat. Prod. Res. 2015, 29,1748-1751. DOI: https://doi.org/10.1080/14786419.2014.998218. [ Links ]

52. Maman, N., Iteleu, B. M., Azimbaeva, G. E., & Dzhiembaev, B. Z. Bulletin of Kazakh National Women’s Teacher Training University. 2018, 3, 37-44. (In Kasakh). Retrieved from: https://vestnik.kazmkpu.kz/jour/article/view/57/58. [ Links ]

Received: March 25, 2022; Accepted: August 12, 2022

*Corresponding author: José F. Cicció, email: jfciccio@gmail.com

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License