SciELO - Scientific Electronic Library Online

vol.54 issue2Formation of Two 1:1 Chlorogenic Acid: β-cyclodextrin Complexes at pH 5: Spectroscopic, Thermodynamic and Voltammetric studyHypargyrin A, a Hemiacetalic Germacrolide from Viguiera hypargyrea (Asteraceae): Biogenetic Implications and Biological Evaluation author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Journal of the Mexican Chemical Society

Print version ISSN 1870-249X

J. Mex. Chem. Soc vol.54 n.2 México Apr./Jun. 2010




Isosteric Heats of Adsorption of N2O and NO on Natural Zeolites


Gerardo Domínguez, Rosario Hernández–Huesca,* and Gelacio Aguilar–Armenta


Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Blvd. 14 sur y Av. San Claudio, Ciudad Universitaria, C.P. 72570, Puebla, Pue. México, *Responsible author:


Received November 24, 2009
Accepted May 25, 2010



We studied the capacities of three natural zeolites to adsorb N2O or NO using a glass high–vacuum volumetric system that permitted characterization of the energetics of the adsorption process. Adsorption equilibrium data were analyzed using the classical Freundlich equation and the Dual–Langmuir model. We employed the Clausius–Clapeyron relationship to calculate the isosteric heats of adsorption using the equilibrium data of the isotherms measured at 273.15 K and 293.15 K. The isosteric heats of reversible adsorption of both gases were smaller than the heats of total adsorption. The interaction energy of N2O with mordenite was larger than the interaction energies of N2O with either erionite or clinoptilolite. The interaction energy of NO was found to be largest with erionite.

Keywords: Adsorption, NOx, isosteric heats, natural zeolites.



Estudiamos la capacidad que presentan tres zeolitas naturales de adsorber N2O y NO, con el objetivo de obtener información sobre la energía característica del proceso de adsorción y mediante el uso de un sistema volumétrico al alto vacío. Las isotermas de adsorción de N2O y NO se ajustaron a las ecuaciones de Dual–Langmuir y Freündlich, respectivamente. La ecuación de Clausius–Clapeyron se utilizó para calcular los calores isostéricos de adsorción a partir de las isotermas de adsorción medidas a 273.15 K y 293.15 K. El calor isostérico de la adsorción reversible de ambos gases presentó valores menores que los de la adsorción total. La energía de interacción del N2O con mordenita fue mayor que con erionita y clinoptilolita, mientras que la energía de interacción de la molécula de NO fue mayor con erionita.

Palabras clave: Adsorción, NOx, calores isostéricos, zeolitas naturales.





We are thankful to Consejo Nacional de Ciencia y Tecnología (CONACyT, Mexico) for financial support via scholarship No. 181781 and Project Ref. I36379–U.



1. Fritz, A.; Pitchon, V. Appl. Catal., B 1997, 13, 1–25.         [ Links ]

2. Machida, M.; Uto, M.; Kurogi, D.; Kijima, T. Chem. Mater. 2000, 12, 3158–3164.         [ Links ]

3. Centi, G.; Generali, P.; dall' Olio, L.; Perathorner, S. Ind. Eng. Chem. Res. 2000, 39, 131–137.         [ Links ]

4. Hartzog, D. G.; Sircar, S. Adsorption 1995, 1, 133–151.         [ Links ]

5. Sircar, S., in: "Fundamentals of Adsorption, Proceedings of Engineering Foundation Conference held at Sonthofen", Germany, Mersmann, A. B., et. al., Ed., Engineering Foundation, New York, 1991, 815.         [ Links ]

6. Siperstein, F.; Gorte, R. J.; Myers, A. L. Langmuir 1999, 15, 1570–1576.         [ Links ]

7. Sircar, S.; Rao, M. B., in: Surfaces of Nanoparticles in Porous Materials, Schwarz, J.A., Contescu, C., Ed., Marcel and Dekker, New York, 1999, 501–518.         [ Links ]

8. Marchon, B.; Carrazza, J.; Heinemann, H.; Somorjai, G. A. Carbon 1998, 26, 507–514.         [ Links ]

9. Do, D. D. Adsorption Analysis: Equilibria and Kinetics, Ed. Imperial College Press, Singapore, 1998.         [ Links ]

10. Breck, D.W. Zeolite Molecular Sieves, Ed. J. Wiley & Sons, Inc., New York, 1974.         [ Links ]

11. Hernández–Huesca, R.; Díaz, L.; Aguilar–Armenta, G. Sep. Purif. Technol. 1999, 15, 163–173.         [ Links ]

12. Hernández–Huesca, R.; Aguilar–Armenta, G. Rev. Soc. Quím. Méx. 2002, 46, 109–114.         [ Links ]

13. Hernández–Huesca, R.; Aguilar–Armenta, G.; Domínguez, G. Sep. Sci. Technol. 2009, 44, 63–74.         [ Links ]

14. Sears, W. M. Langmuir 2001, 17, 5237–5244.         [ Links ]

15. Rakic, V., Dondur, V., Gajinov, S., Auroux, A. Thermochim. Acta 2004, 420, 51–57.         [ Links ]

16. Patiño–Iglesias, M. E.; Aguilar–Armenta G.; Jiménez–Lopez, A.; Rodríguez–Castellon, E. Colloids Surf. A 2004, 237, 73–77.         [ Links ]

17. Aguilar–Armenta, G.; Patiño–Iglesias, M. E.; Jiménez–Jiménez, J.; Rodríguez–Castellon, E.; Jiménez–Lopez, A. Langmuir 2006, 22, 1260–1267.         [ Links ]

18. Rouquerol, F.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids, Ed. Academic Press, London, 1999.         [ Links ]

19. Lunell, S.; Persson, P.; Lund, A.; Liu, Y.–J. J. Phys. Chem. B 2005, 109, 7948–7951.         [ Links ]

20. Biglino, D.; Bonora, M.; Volodin, A.; Lund, A. Chem. Phys. Lett. 2001, 349, 511–516.         [ Links ]

21. Freündlich, H. Colloid and Capillary Chemistry, Ed. Methuen, London, 1926.         [ Links ]

22. Guerasimov, Y.; Dreving, V. Curso de Química Física, Ed. MIR, Moscú, 1971.         [ Links ]

23. Aguilar–Armenta, G.; Patiño–Iglesias, M.E.; Leyva–Ramos, R. Adsorpt. Sci. Technol. 2003, 21, 81–91.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License