SciELO - Scientific Electronic Library Online

 
vol.53 número4Crown Ether Ditopic Receptors for Ammonium Salts with High Affinity for Amino Acid Ester SaltsChemical Constituents of Psacalium sinuatum índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Journal of the Mexican Chemical Society

versión impresa ISSN 1870-249X

J. Mex. Chem. Soc vol.53 no.4 México oct./dic. 2009

 

Article

 

Reactions of Vinylcyclopropane and Bicyclopropyl Compounds With Maleic Anhydride

 

C. K. Jankowski,1* A. Pelletier,1 Eduardo Díaz,2 Jacqueline M. R. Belanger,3 J.R. J. Paré,3 C. Lamouroux,1 and J. Boivin4

 

1 Département de Chimie et Biochimie, Université de Moncton, Moncton , NB, E1A 3E9, Canada. *Responsible author: jankowc@moncton.ca.

2 Instituto de Química, Universidad Nacional Autónoma de México. Circuito Exterior, Ciudad Universitaria. Coyoacán 04510, México, D.F.

3 CTE, Division of green chemistry, Environment Canada, Ottawa, 325 River Road, K1A 0H3 Canada.

4 Institut des substances naturelles, CNRS, 91198 Gif– sur– Yvette, France. Tel 1 506 858 4331, fax 4541.

 

Received June 22, 2009
Accepted November 20, 2009

 

Abstract

Vinylcyclopropane and bicyclopropyl C6 compounds are studied as diene precursors in the Diels–Alder reaction. Their rearrangement under different thermal and microwave conditions leads to specific isomeric hexa–, penta– or butadienes, condensed with maleic anhydride as a dienophile. Adduct stereochemistries were compared to those of previously–synthesized model compounds, and are fully characterized with 2D NMR and GC–MS spectroscopies. Some unsaturated terpenes bearing vinylcyclopropane moieties were also condensed, and their adduct structures assigned.

Key words: Microwave, Thermal Diels–Alder Reactions, Diene Precursors, Vinylcyclopropane as a Diene.

 

Resumen

Vinilciclopropano y compuestos biciclopropilos C6 se estudiaron como precursores de dienos en reacciones de Diels–Alder. La transposición de estos compuestos bajo condiciones térmicas o de irradiación de microondas conduce específicamente a hexa–, penta– o butadienos isoméricos, los cuales cicloadicionan con anhídrido maleico como dienófilo. La estereoquímica de los aductos se estableció por comparación con aductos modelo previamente preparados y se caracterizaron por espectroscopia de RMN de dos dimensiones y CG–EM. Algunos terpenos insaturados llevando consigo el sistema vinil–ciclopropano también se condensaron, y fue asignada la estructura de sus aductos.

Palabras clave: Microondas, reacciones térmicas de Diels–Alder, precursores de dienos, vinilciclopropanos como dienos.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

 References

1. Alder, K.; Stein, G. Angew. Chem. 1937, 50, 510        [ Links ]

2. Woodward, R.B.; Hoffmann, R. "Conservation of orbital symmetry", Verlag chemie, Weiheim, (1970);         [ Links ] Woodward, R.B.; Hoffmann, R. J. Amer. Chem. Soc. 87, (1965) 395;         [ Links ] Woodward, R.B.; Hoffmann, R. Angew. Chem. Int. Ed. 1969, 8, 781.         [ Links ]

3. Kloetzel, M.C.; Org. Reactions, 4, (1948) 1;         [ Links ] Holmes, H.L.; Org. Reactions, 4, (1948) 60;         [ Links ] Butz, L.W. and Rytina, A.W.; Org. reactions, 5, (1949) 136;         [ Links ] Martin, J.G.; Hill, R.K.; Chem. Rev. 61, (1961) 537;         [ Links ] Diels, O.; Alder, K. Ann., 460, (1928) 98;         [ Links ] Diels, O.; Alder, K. Ann., 470, (1929) 62;         [ Links ] Diels, O.; Alder, K.; Ber., 62, (1929) 2081;         [ Links ] Diels, O., Alder, K.; Ber, 62, (1929) 2087;         [ Links ] Littmann, E.R. Ind. Eng. Chem., 28, (1936) 11509.         [ Links ]

4. Corno, C.; Ferraris, G.; Priola, A.; Cesca, S. Macromolecules 1979, 12, 404.         [ Links ]

5. Cesca, S. "Isomerisation Polymerisation" Encyclopedia of Polymer Science and Engineering, Vol. 2, J,Wiley, New York, 1985.         [ Links ]

6. Jankowski, C.K.; Dako, E.; Boulaouz, A.; Delaforge, M.; Paré, J.J.R.; Bélanger, J.M.R. Spectroscopy 2007, 12, 293.         [ Links ]

7. Snyder, L.C.; Meiboom, S. J. Amer. Chem. Soc. 1967, 89, 1038;         [ Links ] Pelletier, A.; M.Sc, Thesis, Université de Moncton, 2008.         [ Links ]

8. Charton, M. and Zabicky, J.; "The chemistry of alkenes" Interscience, NewYork, 2, (1970) 511;         [ Links ] Staley, S.W.; J. Amer. Chem. Soc. 1967, 89, 1532;         [ Links ] Pews, R.G. and Ojha, N.D.; J. Amer. Chem. Soc. 1969, 91, 5769.         [ Links ]

9. Fleming, I.; Frontier Orbitals and Organic Chemical Reactions, J.Wiley, New York, 7th ed., (1976).         [ Links ]

10. Bartlett, P.D. Tetrahedron 1980, 36, 2;         [ Links ] Rhoads, S.J.; and Raulins, N.R. Org. Reactions 22, (1975) 1.         [ Links ]

11. Baldwin, J. Chem. Rev. 2003, 103, 1197 and references quoted therein.         [ Links ]

12. Overton, K.H.; Specialist Periodical Report: Terpenoids and steroids, Vol. 4, 42–6;         [ Links ] Cooper, M.A.; Holden, C.D.; Loftus, P.; Whittaker, D. J. S. C. Perkin II, 1973, 665.         [ Links ]

13. However it is worth noticing that the sigmatropic shift was considered by Woodward–Hoffmann formalism only for a limited number of concerted reactions. The vinylcyclopropane (1) system could undergo a sigmatropic shift only after allylic rearrangement and followed by the opening of the cyclopropane ring. The allylic and/or sigmatropic shifts can then transform the vinylcyclopropane or bicyclopropyl into isomeric dienes of specific geometry. The Cope rearrangement can also be considered as a step toward the final conjugated diene formation. The vinylcyclopropane to cyclopentene rearrangement could then be seen as a 1,3–sigmat–ropic reaction. The accepted mechanism of this reaction proceeds via the formation of 1,5–diradicals in two isomeric configuration: Z (cis) or E (trans). The first one leads to cyclopentene and the second to dienes or other products (Scheme 4).

14. Jankowski, C.K.; Pelletier, A.; Diaz, E.T.; Bélanger, J.M.R.; Paré, J.J.R.; Aumelas, A.; Besson, T.; Pereira ,M.de F.; Mauclaire, L. Can. J. Chem. 2007, 85, 996;         [ Links ] Jankowski, C.K.; Savoie, A.; Lesage, D.; Paré, J.J.R.; Bélanger, J.M.R.; Pereira, M.de F.; Thierry, V.; Besson, T.; Maciejak, O.; Toma, F.; Mauclaire, L.; Lia, X. J. Mex. Chem. Soc. 2006, 50, 90.         [ Links ]

15. Elis, R.J.; Frey, H.M. Proc. Chem. Soc. 1964, 221;         [ Links ] Roth, W.R. and Konig, J.; Ann., 688, (1965) 28;         [ Links ] Ohloff, G.; Tetrahedron Lett. 1965, 3795;         [ Links ] Jorgenson, M.J.; Thacher A.F. Tetrahedron Lett. 1969, 4651;         [ Links ] Corey, E.; Yamamoto, Y.; Herron J.T.; Achiwa, K. J. Amer. Chem. Soc. 1970, 92, 6635;         [ Links ] Dolbier, R.; Sellers, S.F. J. Org. Chem. 1982, 47, 1.         [ Links ]

16. Hirsch, J.A. Concept in Theoretical Organic Chemistry, Allyn and Bacon, Boston, (1974) 79–83.         [ Links ]

17. The parent of these terpenes should be considered thujene (9) with a homoannular and endocyclic vinylcyclopropane which unfortunately is not commercially or easily available as a pure isomer.

18. Diels, O.; Koch, W.; Frost, H. Ber. 1938, 71, 1163.         [ Links ]

19. Goodway, N.F. and West, T.F.; Nature 1937, 934.         [ Links ]

20. Overton, K.H., Ed.; Specialist Periodical Report: Terpenoids and Steroids, Vol.4, The Chemical Society, Burlington House, London, 1974, 42–46.         [ Links ]

21. Kasali, A.A.; Ekundayo, O.; Paul, C.; Konig, W.A.; Phytochemistry, 2002, 59, 805;         [ Links ] Bulow, N.; Konig, W.A. Phytochemistry 2000, 55, 141.         [ Links ]

22. Katritzky, A.R.; Cai, C.; Collins, M.D.; Scriven, E.F.V.; Sing, S.K. J. Chem. Ed., 2006, 83, 634–636;         [ Links ] Bougrin, K.; A.Loupy and M.Souiaoui, I.Photochem.Photobio.C Photochemistry Reviews, 6 (2–3) 139–67 (2005);         [ Links ] Hoz, A.de la; Diaz–Ortiz, A.; Moreno, A.; Critical Rev. 2005, 34, 164–178 See also the references quoted therein;         [ Links ] Kappe, C.O.; Angew. Chem. Int. Ed. 2004, 43, 6250–6284.         [ Links ]

23. Bélanger, J.M.R.; Alfaro, M.J.; Padilla, F.C.; Paré, J.R.J. Food Research International, 2003, 36, 499–504;         [ Links ] Paré, J.R.J.; Rochas, J.–F.; Jacomino, J.–M.; Sanchez, F.N.L.; Bélanger, J.M.R.; Proceedings of the International Symposium on Microwave Science and its Application to Related Fields, Takamatsu, Japan, 2004, 25–28;         [ Links ] Paré, J.R.J.; Bélanger, J.M.R.; AMPERE Newsletter, 2006, 51, 1–4.         [ Links ]

24. Paré, J.R.J.; Bélanger, J.M.R.; Punt, M.M.; US Patent 6,061,926 (2000).

25. Reetz, M.T.; Raguse, B.; Marth, C.F.; Huegel, H.M.; Bach, T.; Fox, D.N.A. Tetrahedron 1992, 48, 5731;         [ Links ] Shibata, T.; Tabira, H.; Kenso, S.; J. Chem. Soc. Perkin Trans. 1998, 177.         [ Links ]

26. Several attempted synthesis described in the literature mentioned the assumed presence of these products, their short lifespan, easy polymerisation or aromatisation. Several procedures were either incomplete or irreproducible. Many particular and non commercial reagents are used in order to obtain e.g. the bicyclopropane (29), in particular zinc–Grignard (24, 28) or photolysis reactions (27).

27. Julia, M. Bull. Soc. Chim. France 1961, 1849.         [ Links ]

28. Khusid, A.K. J. Org. Chem. USSR, 1987, 23, 112 (English translation).         [ Links ]

29. Farneth, W.E.; Thomsen, M.W.; J. Amer. Chem. Soc. 1983, 105, 1843–1848.         [ Links ]

30. Ferreri, C.; Ambrosone, M.; Chatgilialoglu, C. Synth. Commun. 1995, 25, 3351.         [ Links ]

31. Landgeber, J.A.; Becker, L.W.; J. Amer. Chem. Soc. 1968, 90, 395.         [ Links ]

32. The above mentioned difficulties are related to the six carbon or lower chains of dienes involved and to the cyclopropylcarbinols. The other isomeric model C6 dienes were not commercially accessible . Some of them cannot be obtained from the cyclopropane compounds of this study and then are not potential diene precursors.

33. The small volume stainless steel vessel conditions are relatively close to those applied in using the MW methods.