SciELO - Scientific Electronic Library Online

 
vol.53 número3A New Method to prepare an e,e,e Trisadduct of C60 Using a Protection-Deprotection SequenceSesquiterpene Lactones, Acyl Phenyl Propanoids and Other Constituents from Schkuhria pinnata var. wislizeni: Antioxidant Evaluation índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Journal of the Mexican Chemical Society

versión impresa ISSN 1870-249X

J. Mex. Chem. Soc vol.53 no.3 México jul./sep. 2009

 

Article

 

Stereochemical Studies on the Addition of Allylsilanes to Aldehydes. The SE' Component*

 

Scott E. Denmark* and Neil G. Almstead

 

245 Roger Adams Laboratory, Box 18, Department of Chemistry, University of Illinois, 600 S. Mathews Ave., Urbana, IL 61801, Phone:(217) 333–0066, Fax: (217) 333–3984, *Responsible author: sdenmark@illinois.edu.

 

Received August 14, 2009
Accepted September 30, 2009

 

Abstract

Model compounds ul –1 and lk1 have been studied to determine both the position of the silicon electrofuge and the relative orientation of the double bonds in the transition structure of the allylmetal–aldehyde condensation. The use of the deuterium label allows an unbiased assessment of the syn versus anti SE' pathways. The synthesis of configurational proof of model systems ul–1 and lk–1 are discussed as well as the cyclization of the model system. Cyclization of model 1 was found to proceed with high selectivity via an anti SE' pathway regardless of the proximal/distal ratio for all Lewis acids studied. Reactions promoted by fluoride ion favored the proximal product, but both syn and anti pathways were observed.

Key words: Allyllsilanes, Addition to Aldehides, Condensation Reaction, Cyclization, Stereochemistry.

 

Resumen

Se estudiaron los compuestos modelo ul–1 y lk–1 para determinar tanto la posición del silicio electrofugo como la orientación relativa de los dobles enlaces en el estado de transición de la condensación alilmetal–aldehído. El uso del marcaje con deuterio permite una evaluación adecuada de los mecanismos syn versus anti SE'. Se describe la síntesis de los compuestos modelo wl–1 y lk–1 , así como se discute el proceso de ciclación de dichos compuestos. Se encontró que la ciclación de los compuestos modelo 1 procede con elevada selectividad vía un mecanismo SE', independientemente de la proporción de los productos proximal/distal que se obtengan y de los ácidos de Lewis estudiados. Las reacciones promovidas por el ion fluoruro favorecen el producto proximal, aunque ambos caminos syn y anti fueron observados.

Palabras clave: Alilsilanos, adición a aldehídos, reacción de condensación, ciclización, esteroquímica.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgement

We gratefully acknowledge the financial support from the National Science Foundation (NSF CHE 8818147 and 9121631) for this research.

 

References

1. For pertinent reviews of allylmetal additions see: (a) Hoffmann, R. W. Angew. Chem. Int. Ed. Engl. 1987, 26, 489–503.         [ Links ] (b) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207–2293.         [ Links ] (c) Helmchen, G.; Hoffmann, R.; Mulzer, J.; Schaumann, E. Eds.; Stereoselective Synthesis, Methods of Organic Chemistry (Howben–Weyl); E21; Thieme; Stuttgart, 1996; Vol. 3; pp 13571602.         [ Links ] (d) Chemler, S. R.; Roush, W. R. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley–VCH: Weinheim, 2000; Chapter 11.         [ Links ] (e) Yanagisawa, A. In Comprehensive Asymmetric Catalysis; Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H., Eds.; Springer–Verlag: Berlin, 1999; Vol. 2, Chapter 27.         [ Links ] (f) Denmark, S. E.; Almstead, N. G. In Modern Carbonyl Chemistry, Otera, J., Ed.; Wiley–VCH: Weinheim, 2000; Chapter 10.         [ Links ] (g) Denmark, S. E.; Fu, J. Chem. Rev. 2003, 103, 2763–2793.         [ Links ]

2. To effectively describe the products observed in these reactions the stereochemical descriptors suggested by Masamune will be employed: Masamune, S.; Kaiko, T.; Garvey, D. S. J. Am. Chem. Soc. 1982, 104, 5521–5523.         [ Links ]

3. Reviews: (a) Hoffmann, R. W. In Stereocontrolled Organic Synthesis; Trost, B. M., Ed.; Blackwell Scientific Publications: Cambridge; 1994; pp 259–274.         [ Links ] (b) Roush, W. R. In Stereoselective Synthesis, Methods of Organic Chemistry (Howben–Weyl); E21; Helmchen, G.; Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Eds.; Thieme Stuttgart: New York, 1996; Vol. 3; pp 1410–1486.         [ Links ] (c) Hall, D. G.; Lachance, H. Org. React. 2008, 73, 1–573.         [ Links ]

4. Reviews: (a) Gung, B. W. Org. React. 2004, 64, 1–413.         [ Links ] (b) Yamamoto, Y. Acc. Chem. Res. 1987, 20, 243–249.         [ Links ]

5. Reviews: (a) Sakurai, H. Pwre Appl. Chem. 1982, 54, 1–22.         [ Links ] (b) Majetich, G. In Organic Synthesis: Theory and Applications; Hudlicky, T., Ed.; JAI Press: Greenwich, 1989; Vol. 1, p. 173–240.         [ Links ] (c) Hosomi, A. Acc. Chem. Res. 1988, 21, 200–206.         [ Links ] (d) Fleming, I.; Dunogués, J.; Smithers, R. Org. React. 1989, 37, 57–575.         [ Links ] (e) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063–2192.         [ Links ] (f) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375–1408.         [ Links ] (g) Masse, C. E.; Panek, J. S. Chem. Rev. 1995, 95, 1293–1316.         [ Links ] (h) The intramolecular reactions of allylsilanes have also been reviewed: Schinzer, D. Synthesis 1988, 263–273.         [ Links ]

6. Reviews: Furstner, A. Chem. Rev. 1999, 99, (4) 991–1045.         [ Links ] (b) Cintas, P. Synthesis 1992, 248–257.         [ Links ] (c) Avalos, M.; Babiano, R.; Cintas, P.; Jimenez, J. L.; Palacios, J. C., Chem. Soc. Rev. 1999, 28, 169–177.         [ Links ] (d) Hargaden, G. C.; Guiry, P. J. Adv. Synth. Catal. 2007, 349, 2407–2424.         [ Links ]

7. Reviews: (a) Duthaler, R. O.; Hafner, A. Chem. Rev. 1992, 92, 807–832.         [ Links ] (b) Duthaler, R. O.; Hafner, A.; Alsters, P. L.; Rothe–Streit, P.; Rihs, G. Pwre Appl. Chem. 1992, 64, 1897–1910.         [ Links ] (c) Hoppe, D. In Stereoselective Synthesis; Helmchen, G., Hoffmann, R. W., Mulzer, J., Schaumann, E., Eds.; Thieme, Stuttgart: New York, 1995; Vol. E 21b, pp 1551–1583.         [ Links ]

8. Denmark, S. E.; Weber, E. J. Helv. Chim. Acta 1983, 66, 1655–1660.         [ Links ]

9. For an early, general discussion of the topological features of reactions of double bonds see: Seebach, D.; Golinski, J. Helv. Chim. Acta 1981, 64, 1413–1423.         [ Links ]

10. (a) Li, Y.; Houk, K. N. J. Am. Chem. Soc. 1989, 111, 1236–1240.         [ Links ] (b) Gung, B. W.; Xue, X. Tetrahedron: Asymmetry 2001, 12, 2955–2959.         [ Links ]

11. (a) Imachi, M.; Nakagawa, J.; Hayashi, M. J. Mol. Strwct. 1983, 102, 403–412.         [ Links ] (b) Hayashi, M.; Imachi, M.; Saito, M. Chem. Lett. 1977, 221–222.         [ Links ] (c) Beagley, B.; Foord, A.; Moutran, R.; Roszondai, B. J. Mol. Strwc. 1977, 117–120.         [ Links ] (d) Ohno, K.; Toga, K.; Murata, M. Bwll. Chem. Soc. Jpn. 1977, 50, 2870–2876.         [ Links ]

12. White, J. M.; Clark, C. I. In Topics in Stereochemistry; Denmark, S. E., Ed.; Wiley: New York, 1999; pp 137–200.         [ Links ]

13. Kahn, S. D.; Pau, C. F.; Chamberlin, A. R.; Hehre, W. J. J. Am. Chem. Soc. 1987, 109, 650–663.         [ Links ]

14. For a thorough disquisition on the state of the art in SE' reactions see: Matassa, V. G.; Jenkins, P. R.; Kümin, A.; Damm, L.; Schreiber, J.; Felix, D.; Zass, E.; Eschenmoser, A. Isr. J. Chem. 1989, 29, 321–343.         [ Links ]

15. (a) Fleming, I.; Terrett, N. K. Pwre Appl. Chem. 1983, 55, 17071713.         [ Links ] (b) Fleming, I. Pwre Appl. Chem., 1988, 60, 71–78.         [ Links ]

16. (a) Carter, M. J.; Fleming, I. J. Chem. Soc. Chem. Commwn, 1976, 679–680.         [ Links ] (b) Au–Yeung, B.–W.; Fleming, I. J. Chem. Soc. Chem. Commwn. 1977, 79–80.         [ Links ] (c) Au–Yeung, B.–W.; Fleming, I. J. Chem. Soc. Chem. Commwn. 1977, 81.         [ Links ] (d) Fleming, I.; Williams, R. V. J. Chem. Soc. Perkin I, 1981, 684–688.         [ Links ] (e) Carter, M. J.; Fleming, I.; Percival, A. J. Chem. Soc. Perkin I, 1981, 2415–2434.         [ Links ] (f) Chan, T. H.; Fleming, I. Synthesis, 1979, 761–786.         [ Links ] (g) Fleming, I.; Au–Yeung, B. –W. Tetrahedron Swppl. 1 1981, 37, 13–24.         [ Links ] (h) Fleming, I.; Terrett, N. K. Tetrahedron Lett. 1984, 25, 5103–5104.         [ Links ]

17. (a) Fleming, I.; Terrett, N. K. J. Organomet. Chem. 1984, 264, 99–118.         [ Links ] (b) Fleming, I. Terrett, N. K. Tetrahedron Lett. 1983, 24, 4153–4156.         [ Links ] (c) Chow, H.–F.; Fleming, I. Tetrahedron Lett. 1985, 26, 397–400.         [ Links ] (d) Fleming, I.; Sarkar, A. K.; Thomas, A. P. J. Chem. Soc. Chem. Commwn. 1987, 157–159.         [ Links ]

18. (a) Wetter, H.; Scherer, P.; Schweizer, W. B. Helv. Chim. Acta 1979, 62, 1985–1989.         [ Links ] (b) Wetter, H.; Scherer, P. Helv. Chim. Acta 1983, 66, 118–122.         [ Links ]

19. (a) Young, D.; Kitching, W. Tetrahedron Lett. 1983, 24, 57935796.         [ Links ] (b) Wickham, G.; Kitching, W.J. Org. Chem. 1983, 48, 612–614.         [ Links ] (c) Wickham, G.; Kitching, W. Organometallics 1983, 2, 541–547.         [ Links ] (d) Young, D.; Kitching, W.; Wickham, G. Tetrahedron Lett. 1983, 24, 5789–5792.         [ Links ] (e) Young, D.; Kitching, W. Awst. J. Chem. 1985, 38, 1767–1777.         [ Links ] (f) Young, D.; Jones, M.; Kitching, W. Awst. J. Chem. 1986, 39, 563–573.         [ Links ] (g) Wickham, G.; Young, D. ; Kitching, W. Organometallics 1988, 7, 1187–1195.         [ Links ]

20. (a) Hayashi, T.; Konishi, M.; Kumada, M. J. Am. Chem. Soc. 1982, 104, 4963–4965.         [ Links ] (b) Hayashi, T.; Konishi, M.; Kumada, M. J. Org. Chem. 1983, 48, 281–282.         [ Links ] (c) Hayashi, T.; Ito, H.; Kumada, N. Tetrahedron Lett. 1982, 23, 4605–4606.         [ Links ] (d) Hayashi, T.; Okamoto, Y.; Kabeta, K.; Hagihara, T.; Kumada, M. J. Org. Chem. 1984, 49, 4224–4226.         [ Links ]

21. Panek, J. S.; Yang, M. J. Am. Chem. Soc. 1991, 113, 9868–9870.         [ Links ]

22. (a) Denmark, S. E.; Weber, E. J. J. Am. Chem. Soc. 1984, 106, 7970–7971.         [ Links ] (b) Denmark, S. E.; Henke, B. R.; Weber, E. J. J. Am. Chem. Soc. 1987, 109, 2512–2514.         [ Links ] (c) Denmark, S. E.; Weber, E. J.; Wilson, T. M.; Willson, T. M. Tetrahedron 1989, 45, 1053–1065.         [ Links ]

23. (a) Shambayati, S.; Crowe, W. E.; Schreiber, S. L. Angew. Chem. Int. Ed. 1990, 29, 256–272.         [ Links ] (b) Ooi, T.; Maruoka, K. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley–VCH: Weinheim, 2000; Chapter 1.         [ Links ] (c) Saito, S.; Yamamoto, H. In Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley–VCH: Weinheim, 2000; Chapter 2.         [ Links ] (c) Reetz, M. T.; Hüllmann, M.; Massa, W.; Berger, S.; Rademacher, P.; Heymanns, P. J. Am. Chem. Soc. 1986, 108, 2405–2408.         [ Links ] (d) Denmark, S. E.; Henke, B. R.; Weber, E. J. Am. 192 J.         [ Links ] Mex. Chem. Soc. 2009, 53(3) Chem.         [ Links ] Soc. 1987, 109, 2512–2514.         [ Links ] (e) Denmark, S. E.; Almstead, N. G. J. Am. Chem. Soc. 1993, 115, 3133–3139.         [ Links ]

24. (a) Keck, G. E.; Castellino, S. J. Am. Chem. Soc. 1986, 108, 3847–3849.         [ Links ] (b) Keck, G. E.; Castellino, S.; Wiley, M. R. J. Org. Chem. 1986, 51, 5478–5480.         [ Links ] (c) Filippini, F.; Susz, B. –P. Helv. Chim. Acta 1971, 54, 835–845.         [ Links ] (d) Beattie, I. R. Qwart. Rev. 1963, 17, 382–405.         [ Links ]

25. Biddle, M. M.; Reich, H. J. J. Org. Chem. 2006, 71, 4031–4039.         [ Links ]

26. (a) Fleming, I.; Terrett, N. K. J. Organomet. Chem. 1984, 264, 99–118.         [ Links ] (b) Fleming, I. Terrett, N. K. Tetrahedron Lett. 1983, 24, 4153–4156.         [ Links ] (c) Chow, H.–F.; Fleming, I. Tetrahedron Lett. 1985, 26, 397–400.         [ Links ] (d) Fleming, I.; Sarkar, A. K.; Thomas, A. P. J. Chem. Soc. Chem. Commwn. 1987, 157–159.         [ Links ]

27. Gerlach, H.; Mueller, W. Angew. Chem. Int. Ed. Engl. 1972, 11, 1030–1031.         [ Links ]

28. (a) Smithers, R. H. J. Org. Chem. 1978, 43, 2833–2838.         [ Links ] (b) Matsumoto, M.; Kuroda, K. Tetrahedron Lett. 1980, 21, 4021–4024.         [ Links ]

29. (a) Bachman, G. B. J. Am. Chem. Soc. 1933, 55, 4279–4284.         [ Links ] (b) Farrell, J. K.; Bachman, G. B. J. Am. Chem. Soc. 1935, 57, 1281–1283.         [ Links ]

30. (a) Wolinsky, J.; Erickson, K. L. J. Org. Chem. 1965, 30, 22082211.         [ Links ] (b) Dawson, T. M.; Dixon, J.; Littlewood, R. S.; Lythgoe, B. J. Org. Chem. 1971, 2352–2355.         [ Links ]

31. Wadsworth, W. S. Org. React. 1977, 25, 73–253.         [ Links ]

32. (a) Tomboulian, P.; Stehower, K. J. Org. Chem. 1968, 33, 15091512.         [ Links ] (b) House, H. O.; Trost, B. M. J. Org. Chem. 1965, 30, 1341–1348.         [ Links ]

33. Reider, P. J.; Eichen Conn, R.; S.; Davis, P.; Grenda, V. J.; Zambito, A. J.; Grabowski, E. J. J. J. Org. Chem. 1987, 52, 3326–3334.         [ Links ]

34. The stereochemical families are defined by the Seebach–Prelog recommendations by consideration of the two stereocenters of the allylsilane: Seebach, D.; Prelog, V. Angew. Chem. Int. Ed. Engl. 1982, 21, 654–660.         [ Links ]

35. Ratcliffe, R.; Rodehorst, R. J. Org. Chem. 1970, 35, 4000–4002.         [ Links ]

36. The configuration of the hydroxyl group was assigned on the basis of the slope of the LIS of the methylidene group with Eu(fod)3: syn–2, 6.61 ppm/equiv.; anti–2, 2.81 ppm/equiv. See reference 8.

37. (a) Middleton, W. J. Org. Syn. 1985, 64, 221–225.         [ Links ] (b) Szarek, W. A.; Hay, G. W.; Dozoszewski, B. J. Chem. Soc., Chem. Commwn. 1985, 663–664.         [ Links ]

38. (a) Hosomi, A.; Shirahata, A.; Sakurai, H. Tetrahedron Lett. 1978, 3043–3046.         [ Links ] (b) Hosomi, A.; Shirahata, A.; Sakurai, H. Chem. Lett. 1978, 901–904.         [ Links ]

39. DePuy, C. H.; Bierbaum, V. M.; Flippin, L. A.; Grabowski, J. J.; King, G. K.; Schmitt, R. J.; Sullivan, S. A. J. Am. Chem. Soc. 1980, 102, 5012–5015.         [ Links ]

40. (a) Majetich, G.; Casares, A.; Chapman, D.; Behnke, M. J. Org. Chem. 1986, 51, 1745–1753.         [ Links ] (b) Majetich, G.; Desmond, R. W. Jr.; Soria, J. J. J. Org. Chem. 1986, 51, 1753–1769.         [ Links ]

41. (a) Corriu, R. Pwre Appl. Chem. 1988, 60, 99–106.         [ Links ] (b) Corriu, R. J. P.; Guerin, C.; Moreau, J. J. E. Top. Stereochem. 1984, 15, 158–178.         [ Links ] (c) Furin, G. G.; Vyazankina, O. A.; Gostevsky, B. A.; Vyazankin, N. S. Tetrahedron, 1988, 44, 2675–2749.         [ Links ]

42. This conclusion assumes that the rotation of the terminal methylene group of the allyl anion is faster than addition to the aldehyde.

43. Sakurai, H. Synlett. 1989, 1, 1–8.         [ Links ]

44. Still, W. C.; Kahn, M.; Mitra, A. J. J. Org. Chem. 1978, 43, 2923–2925.         [ Links ]

45. Gilman, H.; Schulze, F. J. Am. Chem. Soc. 1925, 47, 2002–2005.         [ Links ]

 

Note

*Dedicated to the memory of Ernest L. Eliel, the doyen of stereochemistry.