SciELO - Scientific Electronic Library Online

 
vol.53 número3Calculation of the Density and Detonation Properties of C, H, N, O and F Compounds: Use in the Design and Synthesis of New Energetic MaterialsSide-chain opening of steroidal sapogenins to form 22-oxocholestanic skeletons: An approach to analogues of the aglycone of the potent anticancer agent OSW-1 índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of the Mexican Chemical Society

versão impressa ISSN 1870-249X

J. Mex. Chem. Soc vol.53 no.3 Ciudad de México Jul./Set. 2009

 

Article

 

Preparation and supporting on solid phase of chiral auxiliary (S)–4–(4–hydroxybenzyl)oxazolidin–2–one from L–tyrosinol assisted by Microwaves

 

Adriana Cruz1 and Ignacio A. Rivero1,2 *

 

1 Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana. C.P. 1166. Tijuana, B.C. 22000, México.

2 Instituto Nacional de Investigaciones Nucleares, Departamento de Química. Carretera México Toluca S/N, La Marquesa, Ocoyoacac, México, D.F. C.P. 52750. *Responsible author: irivero@tectijuana.mx.

 

Received June 4, 2009
Accepted August 11, 2009

 

Abstract

An oxazolidinone chiral auxiliary, (S)–(4–Hydroxybenzyl)–1,3–oxazolidin–2–one 4 was prepared in 23–80 % yield from L–tyrosinol using different methodologies. In solution, compound 4 was protected with a benzyl group on the phenolic hydroxyl 5a, which allowed the optimization of the solid phase synthesis of 5b–5d. Chiral auxiliaries 5a and 5b reacted in solution with an α, β–unsaturated system to give (S)–4–(4–(benzyloxy)benzyl)–1,3–oxazolidin–2–one 6a. By contrast, in solid phase the same reaction afforded 6b. Both reactions were carried out under microwave activation. New compounds were characterized by 1H and 13C NMR, infrared spectroscopy and mass spectrometry.

Keywords: Oxazolidinones, chiral auxiliaries, solid phase synthesis.

 

Resumen

En este trabajo se reporta la preparación del nuevo auxiliar quiral de tipo oxazolidinona, (S)–(4–hidroxibencil)–1,3–oxazolidin–2–ona 4 que fue preparado a partir del L–tirosinol utilizando diferentes metodologías, con rendimientos que fluctúan en un intervalo de 23–80 %, dependiendo del método. El compuesto 4 fue preparado en solución, protegidos con el grupo benciloxi en el hidroxilo fenólico 5a, para llevar a cabo la optimización de la síntesis en fase sólida de 5b–5d. Los auxiliares quirales 5a y 5b fueron adicionados en solución a un sistema α, β–insaturado, obteniéndose a la (S)–4–(4–(benciloxi)bencil)–1,3–oxazolidin–2–ona 6, mientras que en fase sólida se observó la formación del compuesto 6b. Estas reacciones fueron activadas con microondas. Todos los compuestos fueron caracterizados mediante RMN (1H y 13C), IR y EM.

Palabras Claves: Oxazolidinonas, auxiliares quirales, síntesis en fase sólida.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

We gratefully acknowledge support for this project by Consejo Nacional de Ciencia y Tecnología, México (CONACyT, GRANT No. SEP–201–47835), Dirección General de Educación Tecnológica, México (DGEST) and Institute of Chemistry from National Autonomus University of México. Adriana Cruz thanks to CONACyT for a graduate fellowship.

 

References

1. (a) Evans, D. A.; Kim, A. S. In Handbook of Reagents for Organic Synthesis: Reagents, Auxiliaries and Catalysis for CC Bonds; Coates, R. M. Denmark, S. E., Eds. John Wiley & Sons: New York, 1999; pp 91–101.         [ Links ] (b) Zhang, W.; Carter, R. G.; Yokochi, F. T. J. Org. Chem. 2004, 69, 2569–2572.         [ Links ] (c) Anaya de Parrodi, C.; Clara–Sosa, A.; Perez, L.; Quintero, L.; Marañón, V.; Toscano, R.A.; Rojas–Lima, J.A.S.; Juaristi, E. Tetrahedron Asymmetry 2001, 12, 67–79.         [ Links ]

2. Asymmetric Synthesis 2006, 6 Aldrich–Fluka.         [ Links ]

3. (a) Green R.; Merritt, A. T.; Bull, S. D. Chem. Commun. 2008, 508–510.         [ Links ] (b) Pallavicini, M.; Bolchi, C.; Di Pumpo, R.; Fumagalli, L.; Moroni, B.; Valoti, E.; Demartin, F. Tetrahedron: Asymmetry 2004, 15, 1659–1665.         [ Links ] (c) Green, R.; Taylor, J. M.; Bull, S. D.; James, T. D.; Mahon, M. F.; Merritt, A. T. Tetrahedron: Asymmetry 2003, 14, 2619–2623.         [ Links ] (d) Crimmins, M. T.; Emmitte, K. A.; Katz, J. D. Org. Zett. 2000, 2, 2165–2617.         [ Links ]

4. (a) Zhang, J.; Chen, H. N.; Chiang, F. I.; Takemoto, J. Y.; Bensaci, M.; Chang, C. W. J. Comb. Chem. 2007, 9, 17–19.         [ Links ] (b) Barbachyn, M. R.; Ford, C. W. Angew. Chem. Int. Ed. 2003, 42, 2010–2023.         [ Links ]

5. Ager, D. J.; Prakash, I.; Schaad, D. R. Chem. Rev. 1996, 96, 835–875.         [ Links ]

6. a) Evans, D. A. Aldrichimica Acta 1982, 15, 23–32.         [ Links ] b) Rivero, I.A.; Aceves, R. Rev. Soc. Quim. Méx. 2000, 44(2), 97–100.         [ Links ] c) Madrigal, D.; Pina–Luis, G.; Rivero, I.A. J. Mex. Chem. Soc. 2006, 50(4) 175–179.         [ Links ] d) Valdes, A.C.; Pina–Luis, G.; Rivero, I. A. J. Mex. Chem. Soc. 2007, 51(2), 80–88.         [ Links ]

7. Mukhtar, T. A.; Wright, G. D. Chem. Rev. 2005, 105, 529–542.         [ Links ]

8. Aurelio, L.; Brownlee, R. T. C.; Hughes, A. B. Chem. Rev. 2004, 104, 5823–5846.         [ Links ]

9. (a) Evans, D. A.; Ripin, D. H. B.; Johnson, J. S.; Shaughnessy, E. A. Angew. Chem. Int. Engl. 1997, 36, 2119–2121.         [ Links ] (b) Waizumi, N.; Fukuyama, T. I. T. J. Am. Chem. Soc. 2000, 122, 7825–7826.         [ Links ]

10. Renslo, A. R.; Jaishankar, P.; Venkatachalam, R.; Hackbarth, C.; López, S.; Patel, D. V.; Gordeev, M. F. J. Med. Chem. 2005, 48, 5009–5024.         [ Links ]

11. Barbachyn, M. R.; Hutchinson, D. K.; Brickner, S. J.; Zurenko, G. E. J. Med. Chem. 1996, 39, 680–685.         [ Links ]

12. Evans, D. A.; Gage, J. R. Organic Syntheses 1993, 8, 528–531.         [ Links ] Wu, Y.; Shen, X. Tetrahedron: Asymmetry 2000, 11, 4359–4363.         [ Links ]

13. Osa, Y.; Hikima, Y., Sato, Y.; Takino, K.; Ida, Y.; Hirono, S.; Nagase, H. J. Org. Chem. 2005, 70, 5737–5740.         [ Links ]

14. Fernández, I.; Muñoz, L. Tetrahedron: Asymmetry 2006, 17, 2548–2557.         [ Links ]

15. Mishra, R. K.; Coates, C. M; Revell, K. D.; Turos, E. Org. Zett. 2007, 9, 575–578.         [ Links ]

16. Sun, P. C.; Sung, K. M.; Bo, S. T.; Kyu, P. D.; Hae, L. C.; Choi, D.; Koo, L. W. J. Org. Chem. 2003, 68, 43–49.         [ Links ]

17. Faita, G.; Paio, A.; Quadrelli, P.; Rancati, F.; Senecci, P. Tetrahedron 2001, 57, 8313–8322.         [ Links ]

18. Rivero, I. A.; Somanathan, R.; Hellberg, L. H. Synth. Commun. 1993, 23, 711–714.         [ Links ]

19. Mitsunobu, O. Synthesis 1981, 1–28.         [ Links ]

20. Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.; Tatchell, A. R. Voguel's, Textbook of Practical Organic Chemistry, 1989; pp. 399–410.         [ Links ]

21. Gourlay, M. D.; Kendrick, J.; Leusen, F. J. J. Cryst. Growth Des. 2007, 7, 56–63.         [ Links ]

22. Crystallographic Data for the structure in this paper has been deposited with the Cambridge Data Center for 4: CCDC 693196.

23. Sudharshan, M.; Hultin, P.G. Synlett 1997, 171.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons