SciELO - Scientific Electronic Library Online

 
vol.53 número3Efficient 'One Pot' Nitro Reduction-Protection of γ-Nitro Aliphatic Methyl EstersCalculation of the Density and Detonation Properties of C, H, N, O and F Compounds: Use in the Design and Synthesis of New Energetic Materials índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of the Mexican Chemical Society

versão impressa ISSN 1870-249X

J. Mex. Chem. Soc vol.53 no.3 Ciudad de México Jul./Set. 2009

 

Article

 

On the Heats of Formation of Alkanes*

 

Jenn–Huei Lii and Norman L. Allinger*

 

Department of Chemistry, Chemistry Annex, University of Georgia, Athens, Georgia 30602. *Responsible author.

 

Received April 21, 2009
Accepted August 11, 2009

 

Abstract

A broad diverse test set of alkanes and cycloalkanes previously studied with MM4 calculations has had the heats of formation calculated by several different quantum mechanical methods: Hartree–Fock, MP2, and MP4, and also by B3LYP and B3LYP + dispersion energy. Overall, three computational methods (MM4, MP4, and B3LYP + dispersion) yield results that are generally of experimental accuracy. These results are analyzed and compared in some detail.

Keywords: MM4, MP4, B3LYP, Dispersion Energy, Heats of Formation.

 

Resumen

Se describen los cálculos de calores de formación de un conjunto amplio y diverso de alcanos y cicloalcanos que habían sido estudiados previamente por el método MM4. En este trabajo se emplean diversos métodos de mecánica cuántica, entre ellos se encuentran: Hartree–Fock y MP4, así como B3LYP y B3LYP + energía de dispersión. De estos métodos de cálculo, los métodos computacionales MM4, MP4 y B3LYP + energía de dispersión proporcionan resultados que coinciden con los datos experimentales. Estos resultados se analizan y comparan detalladamente.

Palabras clave: MM4, MP4, B3LYP, Energía de dispersión, calores de formación.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

1. Benson, S. W. Thermochemical Kinetics, Wiley, New York, 1976.         [ Links ]

2. Burkert, U.; Allinger, N. L. Molecular Mechanics, American Chemical Society, Washington, D.C., 1982.         [ Links ]

3. Engler, E. M.; Andose, J. D.; Schleyer, P. V. R. J. Am. Chem. Soc. 1973, 95, 8005.         [ Links ]

4. Allinger, N. L.; Tribble, M. T.; Miller, M. A.; Wertz, D. H. J. Am.Chem. Soc. 1971, 93, 1637.         [ Links ]

5. Allinger, N. L.; Hirsch, J. A.; Miller, M. A.; Tyminski, I. J.; and Van–Catledge, F. A. J. Am. Chem. Soc. 1968, 90, 1199.         [ Links ]

6. (a) Cox, J. D.; Pilcher, G. Thermochemistry of Organic and Organometallic Compounds, Academic Press, London, 1970.         [ Links ] (b) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. Thermochemical Data of Organic Compounds, 2nd Edition, Chapman and Hall Ltd, 1986.         [ Links ] (c) National Institute of Standards and Technology (NIST), http://webbook.nist.gov/chemistry/.         [ Links ]

7. Allinger, N. L.; Chen, K.; Lii, J.–H. J. Comput. Chem. 1996, 17, 642.         [ Links ]

8. (a) Chen, K.–H.; Lii, J.–H.; Fan, Y.; Allinger, N. L. J. Comput. Chem. 2007, 28, 2391, and references therein.         [ Links ] (b) Lii, J.–H. J. Phys. Chem. 2002, 106, 8667.         [ Links ]

9. Redfern, P. C.; Zapol, P.; Curtiss, L. A.; Raghavachari, K. J. Phys. Chem. A 2000, 104, 5850, and papers cited therein.         [ Links ]

10. (a) Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory, John Wiley & Sons, Inc., New York, 1986.         [ Links ] (b) Disch, R. L.; Schulman, J. M. J. Phys. Chem. 1996, 100, 3504.         [ Links ] (c) Wheeler, S. E.; Houk, K. N.; Schleyer, P. v. R.; Allen, W. D. J. Am. Chem. Soc. 2009, 131, 2547.         [ Links ]

11. (a) Wiberg, K. J. Comput. Chem., 5, 197 (1984);         [ Links ] Wiberg, K. J. Org. Chem. 1985, 50, 5285.         [ Links ] (b) Ibrahim, M. R.; Schleyer, P. v. R. J. Comput. Chem. 1985, 6, 157.         [ Links ]

12. Allinger, N. L.; Schmitz, L. R.; Motoc, I.; Bender, C.; Labanowski, J. J. Am. Chem. Soc. 1992, 114, 2880. See especially the Supplementary Material.         [ Links ]

13. (a) Allinger, N. L.; Sakakibara, K.; Labanowski, J. J. Phys. Chem. 1995, 99, 9603.         [ Links ] (b) Schmitz, L. R.; Chen, K.–H.; Labanowski, J.; Allinger, N. L. J. Phys. Org. Chem. 2001, 14, 90.         [ Links ]

14. (a) Aped, P.; Allinger, N. L. J. Am. Chem. Soc. 1992, 114, 1.         [ Links ] (b) Chen, K.–H.; Allinger, N. L. J. Mol. Struct. (Theochem), 2002, 581, 215.         [ Links ]

15. (a) Pitzer, K. S.; Gwinn, W. D. J. Chem. Phys. 1942, 10, 428.         [ Links ] (b) Wertz, D. H.; Allinger, N. L. Tetrahedron, 1979, 35, 3.         [ Links ]

16. Gaussian 03, Revision C.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, Jr., T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B. ; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C. ; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al–Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc., Wallingford CT, 2004.         [ Links ]

17. (a) Labanowski, J.; Schmitz, L. R.; Chen, K.–H.; Allinger, N. L. J. Comput. Chem. 1998, 19, 1421.         [ Links ] (b) Schmitz, L. R.; Chen, K.–H.; Labanowski, J.; Allinger, N. L. J. Phys. Org. Chem. 2001, 14, 90.         [ Links ]

18. (a) Kristyan, S.; Pulay, P. Chem. Phys. Lett. 1994, 229, 175.         [ Links ] (b) Grimme, S. J. Chem. Phys., 124, 034108 (2006).         [ Links ] (c) Schwabe, T.; Grimme, S. Phys. Chem. Chem. Phys. 2007, 9, 3397.         [ Links ]

19. Verevkin, S. P.; Nolke, M.; Beckhaus, H.–D.; Ruechardt, C. J. Org. Chem. 1997, 62, 4683.         [ Links ]

20. (a) Beckhaus, H.–D.; Ruechardt, C.; Lagerwall, D. R.; Paquette, L. A.; Wahl, F.; Prinzbach, H. J. Am. Chem. Soc. 1995, 117, 8885.         [ Links ] (b) Beckhaus, H.–D.; Ruechardt, C.; Lagerwall, D. R.; Paquette, L. A.; Wahl, F. Prinzbach, H. J. Am. Chem. Soc. 1994, 116, 11775.         [ Links ]

 

Note

*We would like to dedicate this paper to the memory of the good friend and long term colleague of the senior author, Professor Ernest L. Eliel.

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons