SciELO - Scientific Electronic Library Online

 
vol.52 número2Synthesis and Antibacterial Activity of Pregnenolone-Vitamin B1 ConjugatePorometry Studies of the Polysulfone Membranes on Addition of Poly(ethylene Glycol) in Gelation Bath During Preparation índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of the Mexican Chemical Society

versión impresa ISSN 1870-249X

J. Mex. Chem. Soc vol.52 no.2 Ciudad de México abr./jun. 2008

 

Article

 

The Production of Biodiesel from Blended Commercial Oil in Mexico: A Comparative Study

 

Bárbara Arévalo, Belem Facio, Andrés Jiménez, Eduardo Rogel–Hernández, and Heriberto Espinoza–Gómez*

 

Facultad de Ciencias Químicas e Ingeniería. Universidad Autónoma de Baja California. Calzada Tecnológico 14418, C.P. 22340, Tijuana, B.C. México. *Responsible author: jhespinoza@uabc.mx.

 

Recibido el 14 de enero de 2008
Aceptado el 14 de mayo de 2008

 

Abstract

Recently, a renewed interest has emerged in reformulated and alternative fuels as a way to control emissions and provide energy independence. Biodiesels (fatty acid methyl esters) derived from the transesterification of vegetable oils or animal fats with methanol are potential substitutes for petroleum–based diesel fuels. Compared with conventional diesel, biodiesel has the advantages of being biodegradable, renewable, non–toxic, and producing low emission of pollutants emissions (especially SOx). The biodiesel yield and its ester content were dependent on the type of vegetable oil used; both of these parameters decrease when the vegetable oil's acid value increased due to neutralization of the free fatty acids in the oil. The work that we present here describes a process for the preparation of biodiesel using blended commercial oils and lithium hydroxide as a catalyst. The viscosity, peroxide and acid value of biodiesel complied with specifications established by the EU (European Union) for this type of fuel.

Keywords: Biodisel, commercial oil, fatty acids.

 

Resumen

En la actualidad existe gran interés en reformular los combustibles, como una alternativa para controlar las emisiones y satisfacer las demandas energéticas. El biodiesel se obtiene por transesterificación de aceites vegetales o grasas animales con metanol y son los substitutos potenciales para diesel derivado del petróleo. Comparado con diesel convencional, el biodiesel tiene las ventajas de ser biodegradable, renovable, no tóxico, y generar emisiones bajas de contaminantes (especialmente SOx). El rendimiento de Biodiesel y contenido de éster dependen del tipo de aceite vegetal, ambos disminuyen cuando el número ácido del aceite vegetal aumenta debido a la neutralización del contenido libre de ácido graso en el aceite. La presente investigación se enfoca en la obtención de biodiesel a partir de mezclas comerciales de aceite comestible e hidróxido de litio como catalizador. La viscosidad, el valor del peróxido, y el número ácido estuvieron dentro de las especificaciones de la comunidad europea establecidas para el biodiesel.

Palabras clave: Biodisel, aceite comestible, ácidos grasos.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work has been founded in part by the Universidad Autónoma de Baja California. The authors are also grateful to Samuel Melendez López, PhD, for valuable comments on the manuscript.

 

References

1. Vicente, G.; Martinez, M.; Aracil, J. Energy & Fuels, 2006, 20, 394–398.         [ Links ]

2. Cao, P.; Tremblay, A.Y.; Dubé, M.A.; Morse, K. Ind. Eng. Chem. Res., 2007, 46:1, 52–58.         [ Links ]

3. Fernando, S.; Hanna, M. Energy & Fuels, 2004, 18, 1695–1703.         [ Links ]

4. Dorado, M.P.; Ballesteros, E.; Arnal, J.M.; Gomez, J.; Lopez–Gimenez, F.J. Energy & Fuels, 2003, 17, 1560–1565.         [ Links ]

5. Lettens, S.; Muys, B.; Ceulemans, R.; Moons, E.; Garcia, J.; Coppin, P. Bioenergy, 2003, 24:3, 179–197.         [ Links ]

6. Palz, W.; Spitzer, J.; Maniatis, K.; Kwant, N.; Helm, P.; Grassi, A. Proceedings of 12th International European Biomass Conference; ETA–Florence, WIP–Munich: Amsterdam, The Neaderlands, 2002: vols. 1 and 2.         [ Links ]

7. Bockey, D; Körbitz, W. Situation and Development Potential for the Production of Biodiesel–An International Study. Available via the internet at http://www.ufop.de/, 2002.         [ Links ]

8. Clarke, L.J.; Crawshaw, E.H.; Lilley, L.C. Fatty Acid Mehyl Esters (FAMEs) as Diesel Blend Component. In 9th Annuals Fuels & Lubes Asia Conference and Exhibition, Singapore, January 21-24, 2003.         [ Links ]

9. Campbel, E. Food, Fats and Oils, 8th ed.; Technical Committee of the Institute of Shortening and Edible Oils, Washington, D.C., 1999.         [ Links ]

10. Freedman, B.; Pryde, E.H.; Mounts, T.L. J. Am. Oil Chem. Soc. 1984, 61, 1638–1643.         [ Links ]

11. Schuchardt, U.; Sercheli, R.; Vargas, R.M. J. Braz. Chem. Soc. 1998, 9, 199–210.         [ Links ]

12. Encinar, J.M.; Gonzalez, J.F.; Rodriguez, J.J.; Tejedor, A. Energy & Fuels, 2002, 16, 443–460.         [ Links ]

13. Kulkarni, M.G.; Sawant, S.B. Eur. J. Lip. Sci. Technol. 2003, 105, 214–218.         [ Links ]

14. Oficial Methods and Recommended Practices of the American Oil Chemists; AOCS Press: Camping, IL, 1998.         [ Links ]

15. Plentz, S.M.; Meneghetti, M.R.; Wolf, C.R.; Silva, E.C.; Lima, G.E.S.; de Lira Silva, L.; Serra, T.M.; Cauduro, F.; de Oliveira L.G. Energy & Fuels, 2006, 20, 2262–2265        [ Links ]

16. Standard Test Methods ASTM: Philadelphia, PA, 2002.         [ Links ]

17. Fröhlich, A.; Rice, B.; Vicente, G. The conversion of waste tallow into biodiesel grade methyl ester. Proceedings of the First World Conference and Exhibition on Biomass for Energy and Industry, Seville, Spain, June 5–9, 2000.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons