SciELO - Scientific Electronic Library Online

vol.52 issue1Molecular Speciation Effect on Docking and Drug Design. A Computational Study for Mangiferin, a Carbohydrate-Polyphenol Bioconjugate as a Test CaseMolecular adsorption of NO on a Pd4 cluster: A density functional theory (DFT) study author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand




Related links

  • Have no similar articlesSimilars in SciELO


Journal of the Mexican Chemical Society

Print version ISSN 1870-249X

J. Mex. Chem. Soc vol.52 n.1 México Jan./Mar. 2008




Molecular Dynamics Simulations of the Solubility of H2S and CO2 in Water


Roberto López–Rendón,1, 2 and José Alejandre1*


1 Departamento de Química Universidad Autónoma Metropolitana–Iztapalapa Av. San Rafael Atlixco 186 09340, México D.F., México. *Responsible author:

2 Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.


Recibido el 12 de octubre del 2007
Aceptado el 14 de marzo del 2008



We have performed molecular dynamics simulations at constant temperature and pressure to calculate the solubility of carbon dioxide (CO2) and hydrogen sulfide (H2S) in water. The solubility of gases in water is important in several technological problems, in particular in the petroleum industry. The calculated liquid densities as function of temperature are in good agreement with experimental data. The results at the liquid–vapor equilibrium show that at low temperatures there is an important amount of gases at the interface. The adsorption of gases in the liquid phase decreases as temperatures increases.

Key words: Molecular dynamics simulations, acid gases, solubility.



Se desarrollaron simulaciones de dinámica molecular a temperatura y presión constante para obtener la solubilidad del dióxido de carbono (CO2) y del ácido sulfhídrico (H2S) en agua. La solubilidad de los gases en agua es importante en varios problemas tecnológicos, en particular en la industria del petróleo. Las densidades obtenidas en fase líquida a distintas temperaturas reproducen muy bien los datos experimentales. Los resultados en el equilibrio líquido–vapor muestran que hay una fuerte adsorción de gases en la interfase. La adsorción en la fase líquida disminuye con el aumento de la temperatura.

Palabras clave: Simulaciones de dinámica molecular, gases ácidos, solubilidad.





RLR thanks to UAM–I for a scholarship as a postgraduate student. JA thanks Conacyt for financial support.



1. Kamps, A. P.–S.; Balaban, A.; Jodecke, M.; Kuranov, G.; Smirnova, N. A.; Maurer, G. J. Eng. Chem. Res. 2001, 40, 696–706.         [ Links ]

2. Jou, F. Y.; Mather, A. E.; Otto F. D. Can. J. Chem. Eng. 1995, 73, 140–147.         [ Links ]

3. Kristof, T.; Liszi, J. J. Phys. Chem. B 1997, 101, 5480–5483.         [ Links ]

4. Geiger, L. C.; Ladanyi, B. M.; and Chapin M. E. J. Chem. Phys. 1990, 93, 4533–4542.         [ Links ]

5. Murthy, C. S.; Singer, K. Mol. Phys. 1981, 44, 135–143.         [ Links ]

6. da Rocha S. R. P.; Johnston, K. P.; Westacott, R. E.; Rossky P. J. J. Phys. Chem. B 2001, 105, 12092–12104.         [ Links ]

7. da Rocha S. R. P.; Johnston, K. P.; Rossky, P. J. J. Phys. Chem. B 2002, 106, 13250–13261.         [ Links ]

8. Urukova, I.; Vorholz, J.; Maurer, G. J. Phys. Chem. B 2006, 110, 14943–14949.         [ Links ]

9. Berendsen, H. J. C.; Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269–6271.         [ Links ]

10. Harris, J.; Youg, K. H. J. Phys. Chem. 1995, 99, 12021–12024.         [ Links ]

11. Murthy, C. S.; O'Shea, S. F.; McDonald, I. R. Mol. Phys. 1983, 50, 531–541.         [ Links ]

12. Nath, S. K. J. Phys. Chem. B 2003, 107, 9498–9504.         [ Links ]

13. Tuckerman, M. E.; Alejandre, J.; López–Rendón, R.; Jochim, A. L.; Martyna, G. J. J. Phys. A: Math. Gen. 2006, 39, 5629–5651.         [ Links ]

14. Martyna, G. J.; Tuckerman, M. E.; Klein, M. L. J. Chem. Phys. 1992, 97, 2635–2643.         [ Links ]

15. Martyna, G. J.; Tobias, D. J.; Klein, M. L. J. Chem. Phys 1994, 101, 4179–4189.         [ Links ]

16. Karasawa, N.; Goddard, III W. A. J. Phys. Chem. 1989, 93, 7320–7327.         [ Links ]

17. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys 1995, 103, 8577–8593.         [ Links ]

18. López–Lemus, J; Alejandre, J. Mol. Phys. 2002, 100, 2983–2992.         [ Links ]

19. Lemmon, E. W.; McLinden, M. O.; Friend, D. G. Thermophysical Properties of Fluid Systems, NIST Chemistry WebBook, NIST Standard Reference Database , Eds. P.J. Linstrom and W.G. Mallard,, 2005.         [ Links ]

20. Silkenbaumer, D.; Rumpf, B.; Lichtenthaler, R. N. Ind. Eng. Chem. Res. 1998, 37, 3133–3141.         [ Links ]

21. Kuranov, G.; Rumpf, B.; Smirnova, N. A.; Maurer, G. Ind. Eng. Chem. Res. 1996, 35, 1959–1966.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License