SciELO - Scientific Electronic Library Online

 
vol.52 número1Perspectives on the Density Functional Theory of Chemical Reactivityvon Neumann Entropies Analysis in Hilbert Space for the Dissociation Processes of Homonuclear and Heteronuclear Diatomic Molecules índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of the Mexican Chemical Society

versión impresa ISSN 1870-249X

J. Mex. Chem. Soc vol.52 no.1 Ciudad de México ene./mar. 2008

 

Article

 

Revisiting the Effects of the Molecular Structure in the Kinetics of Electron transfer of Quinones: Kinetic Differences in Structural Isomers

 

Carlos Frontana1* and Ignacio González2

 

1 Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Departamento de Química, Av. Instituto Politécnico Nacional No. 2508. Col. San Pedro Zacatenco, C. P. 07360. México, DF., México, Tel. 52–55–50613800 Ext. 4001, Fax. 52–55–50613389. *Responsible author: ultrabuho@yahoo.com.mx

2 UAM–Iztapalapa, Depto. de Química, Área de Electroquímica, Apartado postal 55–534, 09340, México, D.F.

 

Recibido el 11 de octubre del 2007
Aceptado el 16 de diciembre de 2007

 

Abstract

The effect of 2,5 and 2,6 disubstitution (R = CH3, Cl, C(CH3)3) for 1,4–benzoquinones, in the reorganization energy (λ) for the first electron uptake process was analyzed in acetonitrile solution. Data obtained by cyclic voltammetry suggested differences in λ for each type of disubstitution analyzed. These differences have important consequences in the stability and structure of the electro–generated benzosemiquinone species, which was verified by performing in–situ spectroelectrochemical–ESR (Electron Spin Resonance) experiments of each disubstituted semiquinone.

Key words: Quinone, substituent effect, cyclic voltammetry, inner reorganization energy, ESR.

 

Resumen

El efecto de la disustitución 2,5 y 2,6 (R = CH3, Cl, C(CH3)3) para diferentes 1,4–benzoquinonas, en la energía de reorganización (λ) para el primer proceso de reducción analizado en acetonitrilo. Los datos obtenidos por voltamperometría cíclica sugieren diferencias en λ entre cada tipo de disustitución analizada. Estas diferencias tienen consecuencias importantes en la estabilidad y estructura de las especies benzo–semiquinona electrogeneradas, lo que fue evidenciado en el análisis in situ espectroelectroquímico–ESR (Resonancia del Espín Electrónico) de cada semiquinona disustituida.

Palabras clave: Quinona, efecto de sustituyente, voltamperometría cíclica, energía de reorganización interna, ESR.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors thank Dr. Alejandro Solano–Peralta, (Facultad de Química, UNAM), for his help in the ESR spectra acquisition. C. Frontana thanks CONACyT and SNI–Mexico for the grants and funding given for his Ph. D. and postdoctoral studies.

 

References

1. Bolton, J.L.; Trush, M.A.; Penning, T. M.; Dryhurst, G.; Monks, T. J. Chem. Res. Toxicol. 2000, 13, 135–160.         [ Links ]

2. Brunmark, A.; Cadenas, E. Free Rad. Biol. Med. 1989, 7, 435–477.         [ Links ]

3. Ksenzhek, O. S.; Petrova, S. A.; Kolodyazhny, M. V.; Oleinik, S. V. Bioelectrochem. Bioenerg., 1977, 4, 335–345.         [ Links ]

4. González, F. J.; Aceves, J. M.; Miranda, R.; González I. J. Electroanal. Chem. 1991, 310, 293–303.         [ Links ]

5. Aguilar–Martínez, M.; Bautista–Martínez, J.A.; Macías–Ruvalcaba, N. A.; González, I.; Tovar, E.; Marín del Alizal, T.; Collera, O.; Cuevas, G. J. Org. Chem. 2001, 66, 8349–8363.         [ Links ]

6. Ferraz, P. A. L.; Abreu, F. C.; Pinto, A. V.; Glezer, V.; Tonholo, J.; Goulart, M. O. F. J. Electroanal. Chem. 2001, 507, 275–286.         [ Links ]

7. Zuman, P. Collection Czech. Chem. Commun. 1960, 25, 3225–3244.         [ Links ]

8. Eársky, P.; Zuman, P. Collection Czech. Chem. Commun. 1969, 34, 497–503.         [ Links ]

9. Janzen, E. G. Acc. Chem. Res. 1969, 2, 279–288.         [ Links ]

10. Marcus, R. A. J. Chem. Phys. 1956, 24, 966–978.         [ Links ]

11. Marcus, R. A. Electrochim. Acta, 1968, 13, 995–1004.         [ Links ]

12. Hush, N. S. J. Chem. Phys., 1958, 28, 962–972.         [ Links ]

13. Hush, N. S. Electrochim. Acta 1968, 13, 1005–1023.         [ Links ]

14. Bard, A. J.; Faulkner, L. R. Electrochemical methods. Principles and applications. 2nd edition. John Wiley and Sons, United States of America. 2001.         [ Links ]

15. Rüssel, Ch.; Jaenicke, W. Z. Phys. Chem. N. F. 1984, 139, 97–112.         [ Links ]

16. Clegg, A. D.; Rees, N. V.; Klymenko, O. V.; Coles, B. A.; Compton, R. G. J. Phys. Chem. B. 2004, 108, 13047–13051.         [ Links ]

17. Nicholson, R. S. Anal. Chem. 1965, 37, 1351–1355.         [ Links ]

18. Rosanske, T. W.; Evans, D. H. J. Electroanal. Chem. 1976, 72, 277–285.         [ Links ]

19. Butler, J. A. V. Trans. Faraday. Soc, 1924, 19, 729–733 and 734–739.         [ Links ]

20. Erdey–Grúz, T.; Volmer, M. Z. Phys. Chem. 1930, 150A, 203–213.         [ Links ]

21. Weaver, M. J. Redox Reactions at Metal–Solution Interfaces (Chapter 1) in Comprehensive Chemical Kinetics, R. G. Compton (ed); Volume 27: Electrode Kinetics: Reactions, Elsevier Science and Technology, 1987.         [ Links ]

22. Hupp, J. T.; Liu, H. Y.; Farmer, J. K.; Gennett, T.; Weaver, M. J. J. Electroanal. Chem. 1984, 168, 313–334.         [ Links ]

23. Rüssel, Ch.; Jaenicke, W. J. Electroanal. Chem. 1986, 200, 249–260.         [ Links ]

24. Saveant, J. M.; Tessier, D. J. Phys. Chem. 1977, 81, 2192–2197.         [ Links ]

25. Andrieux, C. P.; Hapiot, P.; Savéant, J. M. J. Phys. Chem. 1988, 92, 5987–5992.         [ Links ]

26. Wipf, D. O.; Wightman, R. M. J. Phys. Chem. 1989, 93, 4286–4291.         [ Links ]

27. Savéant, J. M. Elements of Molecular and Biomolecular Electrochemistry. Wiley Interscience. New Jersey, Chapter 3. 2006.         [ Links ]

28. McConnell, J. Chem. Phys., 1956, 24, 764.         [ Links ]

29. Nelsen, S. F.; Blackstock, S. C.; Kim, Y. J. Am. Chem. Soc. 1987, 109, 677–682.         [ Links ]

30. Roe, D. K. "Overcoming Solution Resistance with Stability and Grace in Potentiostatic Circuits" in Laboratory Techniques in Electroanalytical Chemistry, Kissinger, P. T. and Heineman, W. R. (Editors). Marcel Dekker, Inc. New York, USA. 1996.         [ Links ]

31. He, P.; Faulkner, L. R. Anal. Chem. 1986, 58, 517–523.         [ Links ]

32. Gritzner, G.; Küta, J. Pure Appl. Chem., 1984, 4, 462.         [ Links ]

33. Stewart, J. P. P. J. Comput. Chem. 1989, 10, 209 and 221.         [ Links ]

34. Stewart, J. P. P. J. Comput. Chem. 1990, 11, 543.         [ Links ]

35. Stewart, J. P. P. J. Comput. Chem. 1990, 12, 320.         [ Links ]

36. Pietro, W. J.; Francl, M. M.; Hehre, W. J.; Defrees, D. J.; Pople, J. A.; Binkley, J. S. J. Am. Chem. Soc. 1982, 104, 5039–5048.         [ Links ]

37. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.         [ Links ]

38. Wertz, J. E.; Bolton, J. R. Electron Spin Resonance. First edition, Chapman and Hall, New York, 1972.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons