SciELO - Scientific Electronic Library Online

 
vol.51 número2Analysis and Simulation of Batch Affínity Processes Applied to Separation of BiomoleculesSynthesis and Characterization of Multilayer Films of Dendrimer-Assembled C60 Materials on Nanocrystalline TiO2 Electrodes índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of the Mexican Chemical Society

versión impresa ISSN 1870-249X

J. Mex. Chem. Soc vol.51 no.2 Ciudad de México abr./jun. 2007

 

Article

 

Kinetics of the Degradation of 1,4-Dioxane Using Persulfate

 

Rosa María Félix-Navarro, Shui Wai Lin-Ho, N. Barrera-Díaz and Sergio Pérez-Sicairos

 

Centro de Graduados e Investigación, Instituto Tecnológico de Tijuana A.P. 1166, C.P. 22000, Tijuana, Baja California México. Tel (664) 623 3772, Fax (664) 623 4043 e-mail: rmfelix@tectijuana.mx

 

Recibido el 21 de julio de 2006
Aceptado el 19 de enero de 2007

 

Abstract

The kinetics of oxidation of 1,4-dioxane by persulfate ions in aqueous media was investigated at different temperature, oxidant concentration and pH. Experimental results indicated that 1,4-dioxane degradation follows a pseudo-first-order decay model. Under the experimental conditions the reaction has an activation energy of 21.0 kcal/mol. Temperature and persulfate concentration significantly accelerate the 1,4 dioxane degradation, however, increasing pH (over the range of 3-11) decreased the rate.

Keywords: 1,4-dioxane, persulfate, degradation, kinetics.

 

Resumen

Se investigo la cinética de oxidación de 1,4-dioxano con iones persulfato en medio acuoso a diferente temperatura, concentración del oxidante y pH. Los resultados experimentales indican que la degradación de 1,4-dioxano sigue una cinética de pseudo-primer-orden. La energía de activación de la reacción es de 21.0 kcal/mol bajo las condiciones experimentales. Tanto la temperatura como la concentración de persulfato aceleran significativamente la degradación de 1,4 dioxano, sin embargo, incrementando el pH (3-11) disminuye la velocidad.

Palabras clave: 1,4-dioxano, persulfato, degradación, cinética.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The authors thank Consejo Nacional de Ciencia y Tecnología CONACYT of Mexico (SEP-2004-C01-47959) for financial support for this investigation.

 

References

1. Sandy, T.; Grady, C.P.; Meinninger, S.; Boe, R. Annual Industrial Wastes Technical and Regulatory Conference Proceeding 7th. Charleston, SC,USA , 2001, 88-44 pp.         [ Links ]

2. Alnaizy, R.; Akgerman, A. Adv. Environ. Res. 2000, 4, 233-244.         [ Links ]

3. Stefan, M.I.; Bolton, J.R. Environ. Sci. Technol. 1998, 32, 1588-1595.         [ Links ]

4. Adams, C.D.; Scanlan, P.A.; Secrist, N.D. Environ. Sci. Technol. 1994, 28, 1812-1818.         [ Links ]

5. Fact Sheet 1,4-Dioxane - Emerging Contaminant of Concern. www.ocwd.com/_assets/_pdfs/1,4-Dioxane_Fact_Sheet.pdf.         [ Links ]

6. Zenker, M.J.; Borden, R.C.; Barlaz, M.A. Environ. Eng. Sci. 2003, 20, 423-432.         [ Links ]

7. McGrane, W. Chem. Oxid. 1997, 6, 231-245.         [ Links ]

8. Kosaka, K.; Yamada, H.; Matsui, S.; Shishida, K. Water Sci. Technol. 2000, 42, 353-361.         [ Links ]

9. Bowman, R.H.; Miller, P.; Purchase, M.; Schoellerman, R. Proceedings of the American Chemical Society National Meeting, 2001, San Diego, April 3.         [ Links ]

10. Suh, J.H.; Mohseni, M. Water Research 2004, 38, 2596-2604.         [ Links ]

11. Klecka, G.M.; Gonsior, S.J. J. Hazard. Mater. 1986, 13, 161-168.         [ Links ]

12. Maurino, V.; Calza, P.; Minero, C.; Pelizzetti; E.; Vicenti, M. Chemosphere 1997, 35, 2675-2688.         [ Links ]

13. Kolthoff, I.M.; Miller, J.K. J. Am. Chem. Soc. 1951, 73, 3055-3059.         [ Links ]

14. House, D.A. Chem. Rev. 1962, 62, 185-200.         [ Links ]

15. Berlin, A.A. Kinet. Catal. 1986, 27, 34-39.         [ Links ]

16. Wilmarth, W.K.; Haim, A. Peroxide Reaction Mechanisms. In: Edwards, J.O. (Ed.), Interscience, New York, 1962, 47-70.         [ Links ]

17. Nosov, E.F. Russ. J. Phys. Chem. 1966, 40, 1571-1572.         [ Links ]

18. Dogliotti, L.; Hayon, E. J. Phys. Chem. 1967, 71, 2511-2516.         [ Links ]

19. Hayon, E.; McGarvey, J.J. J. Phys. Chem. 1967, 71, 1472-1477.         [ Links ]

20. Tanner, D.D.; Osman, S.A. J. Org. Chem. 1987, 52, 4689-4693.         [ Links ]

21. Clarke, N.; Knowles, G. Effluent Water Treat. 1982, 335- 341.         [ Links ]

22. CRC Handbook of Chemistry and Physics, 75th ed., D.R. Lide, Editor, CRC Press, Boca Raton, FL, 1995, 8-21 pp.         [ Links ]

23. Scalia, S.; Guarneri, M.; Menegatti, E. Analyst 1990, 115, 929-931.         [ Links ]

24. Huang, K.C.; Couttenye, R.A.; Hoag, G.E. Chemosphere 2002, 49, 423-420.         [ Links ]

25. Levitt, L.S.; Malinowski, E.R. J. Am. Chem. Soc. 1955, 77, 4517-4519.         [ Links ]

26. Srivastava, S.P., Ghosh, S. Z. Physik. Chem. 1953, 202, 198-201.         [ Links ]

27. Espenson, J.H. Chemical Kinetics and Reaction Mechanisms, 2nd ed. New York/McGraw-Hill, Inc., 1995, 156-160 pp.         [ Links ]

28. Sing, U.C.; Venkatarao, K. J. Inorg. Nucl. Chem. 1976, 38, 541-543.         [ Links ]

29. Xu, S.C.; Zhou, H.; Wei, X.; Jun, L. Ozone Sci. Eng. 1989,11, 281-296.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons