SciELO - Scientific Electronic Library Online

 
vol.50 número3Synthesis of α,β-Epoxysulfoxides: Thermodynamic Control in Base-induced Cyclization of Chlorohydrins Derived from α-Chlorobenzyl Phenyl Sulfoxide and Alkyl Aldehydes índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of the Mexican Chemical Society

versão impressa ISSN 1870-249X

J. Mex. Chem. Soc vol.50 no.3 Ciudad de México Jul./Set. 2006

 

Article

 

Screening of Liver Acetone Powders in the Enantioselective Hydrolysis of Naproxen Esters

 

Ana Pacheco, Héctor Luna,* Aida Solís, Herminia I. Pérez, Norberto Manjarrez

 

Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Delg. Coyoacan, México, D.F. CP 04960, Phone: (55) 5483-7255 Fax: (55) 5483-7237, e-mail: lchm1964@correo.xoc.uam.mx

 

Recibido el 1 de marzo del 2006.
Aceptado el 26 de septiembre del 2006
.

 

Abstract

LAPs from different sources were used to hydrolyze the methyl and butyl esters of naproxen. The results revealed that no generalization can be done about the reaction conditions, since they greatly depend on the LAP source and the substrate. For example, in the hydrolysis of methyl naproxenate by rabbit LAP the conversion was 20% at pH 8, but the ee for the acid produced was 44%, in contrast to 80% ee at pH 7.5 with chicken LAP at the same conversion. In other hand cat LAP gave a conversion of 80% at all pHs and 90% ee at pH 7.5. The results for the butyl naproxenate hydrolysis were different; with pig LAP the conversion was 40% but only 34% ee, turkey LAP gave 12% conversion and 90% ee, and cat provided 17% conversion and 90% ee, all these results at pH 7.5. All LAP tested, except sheep, gave enantiopreference for the hydrolysis of the R-enantiomer.

Key words: Naproxen, enzymatic resolution, liver acetone powder.

 

Resumen

Polvos acetónicos de hígado de diferentes fuentes fueron aplicados a la hidrólisis de los ésteres metílico y butílico del naproxén. Los resultados muestran que es difícil hacer generalizaciones respecto a las condiciones de reacción, ya que estas dependen significativamente de la fuente del LAP y del sustrato. Por ejemplo, en la hidrólisis del naproxenato de metilo por el LAP de conejo la conversión fue del 20% con un ee en el ácido producido del 44% a pH 8, en contraste a un 80% de ee a pH 7.5 con el LAP de pollo a la misma conversión. El LAP de gato dio una conversión del 80% en todos los pHs con un 90% de ee a pH 7.5. Los resultados para la hidrólisis del naproxenato de butílo fueron diferentes; con el LAP de puerco la conversión fue del 40%, pero solo dio 43% ee, el LAP de guajolote dio solo 12% de conversión y un 90% de ee y el LAP de gato dio 17% de conversión y 90% de ee, todos estos resultados a un pH de 7.5. Todos los LAPs probados, a excepción del de borrego, mostraron una preferencia hacia la hidrólisis del enantiómero R.

Palabras clave: Naproxen, resolución enzimática, polvo acetónico de hígado.

 

DESCARGAR ARCHIVO EN FORMATO PDF

 

Acknowledgments

We thank the financial support of Consejo Nacional de Ciencia y Tecnología (CONACyT) Grant num. 37272-N. Wealso thank Julia Cassani Hernández for the NMR espectra. We thank Dr. Ignacio Regla for the racemic naproxen donation. We thank to the University animal facilities (Unidad de Producción y Experimentación de Animales de Laboratorio: Bioterio) for providing the rat livers.

 

References

1. Patel, R. N. Stereoselective biocatalysis Marcel Dekker Inc., Ed. New York: 2000.         [ Links ]

2. a) Patel, R. N. Adv. Synth. Catal. 2004, 343, 527-546;         [ Links ] b) Ikunaka, M. Catalysis Today 2004, 96, 93-102.         [ Links ] c) Leuenberger, H.G.W. in: Microbial Reagents in Organic Synthesis, Servi, S., Ed., Kluwer Academic Publishers, Netherland, 1992, p.149-158.         [ Links ]

3. Some references on the applications of LAPs. a) Basavaiah, D.; Rama Krishna P.; Bharathi, T.K. Tetrahedron Lett. 1990, 31, 4347-4348;         [ Links ] b) Basavaiah, D.; Bhaskar Raju, S. Tetrahedron. 1994, 50, 4137-4148;         [ Links ] c) Basavaiah, D.; Dharma Rao, P. Synth. Comm. 1994, 24, 925-929;         [ Links ] d) Comini, A.; Forzato, C.; Nitti, P.; Pitacco, G.; Valentin, E. Tetrahedron: Asymmetry 2004, 75, 617625;         [ Links ] Basavaiah, D.; Rama Krishna, P. Pure & Appl. Chem. 1992, 64, 1067-1072.         [ Links ]

4. Some patent applications of LAPs. a) Holton, R.A.; Vu, Ph. US patent 6,548,293 2003;         [ Links ] b) Goswami, A. US patent 5,281,534 1994;         [ Links ] c) Liu, K.K. US patent 6,828,134 2004;         [ Links ] d). Flavin, M.T; Xu, Z-Q; Khilevich, A.; Rizzo, J.D; Chen, W.; Lin, L.; Kucherenko, A.; Sheinkman, A.K;. Boulander, W.A US patent 6,043,271 2000;         [ Links ] e) Raju, M.S.; Huh, N. US patent 5,348,973 1994.         [ Links ]

5. a). Liu, K.K US Patent 6, 828,134 2001;         [ Links ] b) Raju, M., Huh, N. US Patent 5, 348,973 1974;         [ Links ] c) Goswani, A. US Patent 5,281,534 1994.         [ Links ]

6. a) Holla, W. US Patent 6,406,912 2000;         [ Links ] b) Holton, R.A. US Patent 6, 548,293 2000;         [ Links ] c) Iding, H., Wuirz, B., Zutter, V. US Patent 6, 518,048 2003;         [ Links ] d) Liu, K.K. US Patent 6,828,134 2004;         [ Links ] e) Zard, L., Tixidre, A. US Patent 5,677,168 1997.         [ Links ]

7. a) Basavaiah, D.; Rama Krisna, P.; Bharathi, T.K. Tetrahedron Lett. 1990, 31, 4347-4348;         [ Links ] b) Basavaiah, D., Rama Krisna, P. Indian J. Chem. 1973, 32B, 131-134;         [ Links ] c) Basavaiah, D., Bhaskar Raju, S. Bioorg. Med. Chem. Lett. 1992, 2, 955-958.         [ Links ]

8. a) Jogham, S.; Koening, J.J.; Puech, F.; Burnier, P.; Zard, L. US Patent 5 ,641,785 1995;         [ Links ] b) Crosby, J.; Pittam, J.D.; Halt, R. US Patent 6 ,261,830 2000;         [ Links ] c) Chiarello, J.F., Buckwalter, B.L.; Barden, T.C. US Patent 6,770,463 2004;         [ Links ] d) Ghorpade, S.R.; Kalkote, U.R.; Chavan, S.P.; Bhide, S.R.; Ravinidranathan, R. US Patent 6, 417,374 2001;         [ Links ] e) George, P.; Froissant, J.; Tixidre, A. US Patent 5,244,901 1993;         [ Links ] f) Comini A.; Forzato, C.; Nitti, P.; Pitacco, G.; Valentin, E. Tetrahedron: Asymmetry 2004, 15, 617-625;         [ Links ] g) Felluga, F.; Fermeglia, M.; Ferrone, M.; Pitacco, G.; Priel, S.; Valentin, E. Tetrahedron: Asymmetry 2002, 13, 475-486.         [ Links ]

9. Sánchez, R.; Luna, H.; Pérez, H. I.; Manjarrez, N.; Solís, A. Tetrahedron: Asymmetry. 2001, 12, 1399-1401.         [ Links ]

10. a) Goswami, A. US Patent 5,281,534 1994;         [ Links ] b) Holla, W. US Patent 6,406,912 2000;         [ Links ] c) Yoshida, N.; Sugiura, T.; Koizumi, Y. US Patent 5, 518, 903 1996.         [ Links ]

11. a) Seebach, D.; Eberle, M. Chimia 1986, 40, 315-318;         [ Links ] b) Basavaiah, D.; Dharma Rao, P. Synth. Commun. 1994, 24, 925-929.         [ Links ]

12. Faber, K. Biotransformations in Organic Chemistry Springer-Verlag, 4Th Ed., Berlin, 2000.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons