SciELO - Scientific Electronic Library Online

 
vol.13 número2PrefaceAn ontology evolution method based on folksonomy índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.13 no.2 Ciudad de México abr. 2015

 

Effects of excimer laser annealing on low-temperature solution based indium-zinc-oxide thin film transistor fabrication

 

Chao-Nan Chena, Jung-Jie Huangb*

 

a Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan.

b Department of Industrial Engineering and Managemet, DaYeh University, Changhua, Taiwan. *Corresponding author. E-mail address: jjhuang@mail.dyu.edu.tw

 

Abstract

A Solution Based Indium-Zinc-Oxide thin-film transistor (TFT) with a field-effect mobility of 0.58 cm2/Vs, a threshold voltage of 2.84 V by using pulse laser annealing processes. Indium-zinc-oxide (IZO) films with a low process temperature were deposited by sol-gel solution based method and KrF excimer laser annealing (wavelength of 248 nm). Solution based indium-zinc-oxide (IZO) films usually needs high temperature about 500°C post annealing in a oven. KrF excimer laser annealing shows advantages of low temperature process, the less process time deceases to only few seconds was used to replace the high temperature process. IZO thin films suffering laser irradiation still keeps the amorphous film quality by transmission electron microscopy (TEM) diffraction pattern analysis. It could be expected this technology to large-area flexible display, in the future.

Keywords: Solution process; Indium-zinc-oxide; Thin-film transistor; Excimer laser annealing.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors would like to thank the Asia University for financially supporting this research under contract No. 102-asia-37.

 

References

Choi, C.G., Seo, S.J., & Bae, B.S. (2008). Solution-Processed Indium-Zinc Oxide Transparent Thin-Film Transistors. Elec. Chemic. and Solid-State Let., 11, H7-H9.         [ Links ]

Fortunato, E.M.C., Barquinha, P.M.C., Pimentel, A.C.M.B.G., Goncalves, A.M.F., Marques, A.J.S., Pereira, L.M.N., & Martins, R.F.P. (2005). Fully transparent ZnO thin-film transistor produced at room temperature. Advanced Materials, 17, 590-594.         [ Links ]

Ito, N., Sato, Y., Song, P.K., Kaijio, A., Inoue, K., & Shigesato, Y. (2006). Electrical and optical properties of amorphous indium zinc oxide films. Thin Solid Films, 496, 99-103.         [ Links ]

Jeong, W.H., Bae, J.H., & Kim, H.J. (2002). High-Performance Oxide Thin-Film Transistors Using a Volatile Nitrate Precursor for Low-Temperature Solution Process. Elec. Dev. Let., IEEE, 33, 68-70.         [ Links ]

Kim, M., Jeong, J.H., Lee, H.J., Ahn, T.K., Shin, H.S., Park, J.S., & Kim, H.D. (2007). High mobility bottom gate InGaZnO thin film transistors with SiO x etch stopper. Applied Physics Letters, 90, 212114-212114.         [ Links ]

Ku, D.Y., Kim, I.H., Lee, I., Lee, K.S., Lee, T.S., & Kim, W.M. (2006). Structural and electrical properties of sputtered indium-zinc oxide thin films. Thin Solid Films, 515, 1364-1369.         [ Links ]

Jeong, J.K., Jeong, J.H., Yang, H.W., Park, J.-S., Mo, Y.-G., & Kim, H.D. (2007). High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel. Applied Physics Letters, 91, 113-505.         [ Links ]

Masuda, S., Kitamura, K., Okumura, Y., Miyatake, S., Tabata, H., & Kawai, T. (2003) . Transparent thin film transistors using ZnO as an active channel layer and their electrical properties. Journal of Applied Physics, 93, 1624-1630.         [ Links ]

Mbodji, S., Dieng, M., Mbow, B., Barro, F. I., & Sissoko, G. (2010). Three dimensional simulated modelling of diffusion capacitance of polycrystalline bifacial silicon solar cell. Journal of Applied Science and Technology, 15.         [ Links ]

Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., & Hosono, H. (2004) . Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 432, 488-492.         [ Links ]

Park, J.S., Maeng, W.J., Kim, H.S., & Park, J.S. (2012). Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films, 520, 1679-1693.         [ Links ]

Pi, J.-E., Ryu, M.K., Hwang, C.-S., Park, S.-H.K., Yoon, S.-M., Lym, H., & Park, K. (2013). A simple shift register circuit for depletion-mode oxide TFTs. Solid-State Electronics, 79, 2-6.         [ Links ]

Ramamoorthy, K., Kumar, K., Chandramohan, R., Sankaranarayanan, K., Saravanan, R., Kityk, I. V., & Ramasamy, P. (2006). High optical quality IZO (In 2 Zn 2 O 5) thin films by PLD-a novel development for III-V opto-electronic devices. Optics communications, 262, 91-96.         [ Links ]

Rendón, G., Poot, P., Oliva, A.I., & Espinosa-Faller, F.J. (2012). A Simple Substrate Heater Device With Temperature Controller for Thin Film Preparation. Journal of Applied Research and Technology, 10, 549-556.         [ Links ]

Kashiwaba, Y., Katahira, F., Haga, K., Sekiguchi T., & Watanabe, H. (2000). Hetero-epitaxy growth of ZnO thin films by atmospheric pressure CVD method. J. Crystal Growth, 221, 431-434.         [ Links ]

Yaglioglu, B., Yeom, H.Y., Beresford, R., Paine, D.C. (2006). High-mobility amorphous In2O3-10wt% ZnO thin film transistors. Applied Physics Letters, 89), 062103.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons