SciELO - Scientific Electronic Library Online

 
vol.12 número3A Network QoS Framework for Real-time Event Systems in highly Mobile Ad-hoc EnvironmentsMechatronic Design, Dynamic Modeling and Results of a Satellite Flight Simulator for Experimental Validation of Satellite Attitude Determination and Control Schemes in 3-Axis índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.12 no.3 Ciudad de México jun. 2014

 

Design, Commissioning and Testing of an Electrodynamometer Based on PM Synchronous Machines

 

J.J. Rodríguez-Rivas*1 and E. Peralta-Sánchez2

 

1 Departamento de Ingeniería Eléctrica. SEPI. ESIME ZACATENCO, Instituto Politécnico Nacional México, D. F., México. *jjrodriguezr@ipn.mx

2 Departamento de Ingenierías, Universidad Popular Autónoma del Estado de Puebla Puebla, Pue., México.

 

ABSTRACT

This paper addresses the design, simulation, commissioning and testing of an electrodynamometer (ED) to assess the dynamic performance of Electric Vehicles (EV). The EV-ED system is comprised of two electric machines coupled mechanically. The traction machine is a 7.75 kW Permanent Magnet Synchronous Motor which is controlled by means of a vector control and it is coupled mechanically to a similar machine which is used as a mechanical load. The load machine was fed by two DC/AC converters connected by the DC bus allowing bidirectional power flow. The electrodynamometer was controlled by means of a National Instruments electronic board and Labview software. Several load profiles and inertias were programmed to emulate an Electric Vehicle (EV). The traction machine drive was implemented with a PP75T120 Powerex Inverter. PWM generation and control strategy were implemented on a MC56F8357 Freescale Digital Signal Controller (DSC). The speed control of the traction machine was validated for different driving cycles. Matlab/Simulink simulations of the machine control and electrodynamometer along with experimental results illustrating the response of the machine control under the characteristic load profile of an EV are presented and analyzed. Traction and regenerative breaking stages are analyzed and discussed broadly.

Keywords: Electrodynamometer, electric vehicle, permanent magnet synchronous machine.

 

RESUMEN

Este artículo aborda el diseño, simulación, implementación y comprobación experimental de un electrodinamómetro (ED) con el objetivo fundamental de evaluar el desempeño dinámico de un vehículo eléctrico (EV). El sistema ED-EV está compuesto de dos máquinas eléctricas acopladas mecánicamente. La máquina de tracción es una máquina síncrona de imanes permanentes (PMSM) de 7.75 kW y su sistema de control es de tipo vectorial. La máquina esta acoplada mecánicamente con otra similar la cual es utilizada como máquina de carga. El electrodinamómetro fue implementado con dos convertidores CD/CA conectados entre sí por el bus de CD permitiendo un flujo de potencia bidireccional. El electrodinamómetro es controlado por medio de una tarjeta electrónica de National Instruments y Labview instalado en una computadora. Para emular el EV se programaron diferentes perfiles de carga e inercias. El accionamiento de la máquina de tracción fue implementado con un inversor Powerex del tipo PP75T120. La generación de las señales PWM y la estrategia de control fueron implementadas en un controlador digital de señales (DSC) de Freescale del tipo MC56F8357. El control de velocidad de la máquina de carga fue validado usando diferentes ciclos de manejo. Se presentan y analizan simulaciones en Matlab/Simulink del control de la máquina y del electrodinamómetro, así como resultados experimentales que ilustran la respuesta del control de la máquina de tracción con una carga que corresponde a un EV. Las etapas de tracción y frenado regenerativo son analizadas y discutidas ampliamente.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgment

This work was supported by the Institute of Science and Technology for Federal District (ICyTDF), México, under the project grant PICS08-50.

 

References

[1] E.R. Collins and Y. Huang, "A Programmable Dynamometer for Testing Rotating Machinery Using a Three Phase Induction Machine," IEEE Trans. on Energy Conversion, Vol 9, No. 3, pp. 521-527, 1994.         [ Links ]

[2] C.R. Hewson et al., "Dynamometer Control for Emulation of Mechanical Loads," Industry Applications Conference, Vol. 2, pp. 1511-1518, 1998.         [ Links ]

[3] Betz R.E. Penfold H.B. and Newton R.W., Local Vector Control of an AC Drive System Load Simulator, Proc. of The Third IEEE Conference on Control Applications, Vol 1, 1994, pp. 721-726, Aug.         [ Links ]

[4] Hewson C.R. Asher G.M. & Sumner M., A Dynamic Mechanical Load Emulation Test Facility to Evaluate the Performance of AC Inverters, Seventh International Conference on Power Electronics and Variable Speed Drives, 1998, Sept.         [ Links ]

[5] Akpolat Z.H. Asher G.M. & Clare J.C., Dynamic Emulation of Mechanical Loads Using a Vector Controlled Induction Motor-Generator Set, IEEE Trans. on Industrial Electronics, Vol 46, No. 2, 1999, pp 370-379, Apr.         [ Links ]

[6] Rodic M., Jezernick K., & Trlep M., Dynamic Emulation of Mechanical Loads: An Advanced Approach, IEE Proceedings Electric Power Applications, Vol. 153, No. 2, 2006, pp. 159-166, March.         [ Links ]

[7] Faheem, Mahmud S.A., Khan G.M., & Rahman, M.A. Survey of Intelligent Car Parking System, Journal of Applied Research and Technology, Vol. 11, No. 5, 2013, pp. 714-726, October.         [ Links ]

[8] Zhang N., & Zhang W., Research on an Energy Feedback Power Dynamometer Based on Improved Vector Control, The 15th International Conference on Electrical Machines and Systems, ICEMS'07, 2007, pp. 1-4.         [ Links ]

[9] Yang J,. & Huang J. Research on an AC Variable-frequency Power Dynamometer Based on PWM Rectifier and Fuzzy Direct Torque Control, The IEEE 5th International Power Electronics and Motion Control Conference, IPMEC'06, 2006, Vol. 2, pp. 1-6.         [ Links ]

[10] Weng L., & Dong Z.Y., Optimal Design of a Regenerative Dynamic Dynamometer Using Generic Algorithms, The 2003 Congress on Evolutionary Computation, Vol. 4, 2003, pp. 2665-2672.         [ Links ]

[11] Mihailovicl Z., Prasad H.V. & Borojevic D., Computer Modeling and Analysis of VSI Fed Permanent Magnet Synchronous Motor Drive Systems with Adjustable Levels of Complexity, Applied Power Electronics Conference and Exposition, APEC ́97, Vol. 2,1997, pp. 728-735.         [ Links ]

[12] Krishnan R., Electric Motor Drives: Modeling, Analysis, and Control, Prentice Hall, Inc., 2001.         [ Links ]

[13] Espina J.I PTR, 2002 and AC Drives", Arias A. & Ortega C., Speed Anti-Windup PI Strategies Review for Field Oriented Control of Permanent Magnet Synchronous Machines, Compatibility and Power Electronics CPE'09, Vol. 20, 2009, pp. 279-285.         [ Links ]

[14] Mehrdad E., Gao Y., Sebastien E.G. & Emadi A., Modern Electric, Hybrid Electric and Fuel Cell Vehicles Fundamentals, Theory and Design" CRC Press LLC, 2005.         [ Links ]

[15] User Guide Unidrive SP model 0 to 6 Universal Variable Speed AC Drive for induction and servo motors Part Number: 0471-0000-12 Issue: 12. http://www.emersonindustrial.com/en-EN/controltechniques/downloads/userguidesandsoftware/Pages/unidrivesppanelmount.aspx        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons