SciELO - Scientific Electronic Library Online

 
vol.11 issue6Critical Factors toward Successful R & D Projects in Public Research Centers: a PrimerFuzzy logic scheme for tip-sample distance control for a low cost near field optical microscope author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Journal of applied research and technology

On-line version ISSN 2448-6736Print version ISSN 1665-6423

J. appl. res. technol vol.11 n.6 Ciudad de México Dec. 2013

 

Numerical Study of Diodicity Mechanism in Different Tesla-Type Microvalves

 

A. Y. Nobakht1, M. Shahsavan2, A. Paykani*3

 

1 Department of Mechanical Engineering, Urmia University, Urmia, Iran.

2 Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.

3 Department of Mechanical Engineering, Parand Branch, Islamic Azad University, Parand, Iran. *a.paykani@gmail.com.

 

ABSTRACT

Microvalve is one of the most important components in microfluidic systems and micropumps. In this paper, three-dimensional incompressible flow through a Tesla-type microvalve is simulated using FLUENT computational fluid dynamic package. The flow is laminar and SIMPLE algorithm is used. The second-order upwind method is implemented for discretizing convective terms. The diodicity mechanism is investigated in detail for three different microvalves. Effect of several series Tesla-type microvalves on diodicity is also studied. The numerical analyses reveal that the mechanism of diodicity occurs at the T-junction and side channel. If inlet and outlet channels are eliminated, diodicity can be increased by 2. Pressure field analysis shows that the pressure drop is much severe at the junction of the reverse flow compared to the forward flow. The obtained numerical results are compared with those of experimental and a good agreement between them is noticed.

Keywords: Tesla microvalve; diodicity; pressure field, velocity field.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Oh K., Ahn C. (2006). A review of microvalves. J Micromech Microeng, 16: R13-R39.         [ Links ]

[2] Bae B., Kim N., Kee H., Kim S., Lee Y., Lee S., Park K. (2002). Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment. J Microelectromech Syst 11: 344-354.         [ Links ]

[3] Yang X., Holke A., Jacobson S., Lang J., Schmidt A., Umans S. (2004). An electrostatic, on/off microvalve designed for gas fuel delivery for the mit microengine. J Microelectromech Syst 13:660-668.         [ Links ]

[4] Li H., Roberts D., Steyn J., Turner K., Yaglioglu O., Hagood N., Spearing S., Schmidt M. (2004). Fabrication of a high frequency piezoelectric microvalve. Sens Actuators A, 111:51-56.         [ Links ]

[5] Rich C., Wise K. (2003). A high-flow thermopneumatic microvalve with improved efficiency and integrated state sensing. J Microelectromech Syst 12:201-208.         [ Links ]

[6] Suzuki H., Yoneyama R. (2003). Integrated microfluidic system with electrochemically actuated on-chip pumps and valves. Sens Actuators B 96:38-45.         [ Links ]

[7] Pal R., Yang M., Johnson B., Burke D., Burns M. (2004). Phase change microvalve for integrated devices. Anal Chem 76:3740-3748.         [ Links ]

[8] Yoshida K., Kikuchi M., Park J., Yokota S. (2002). Fabrication of micro electro-rheological valves (ER valves) by micromachining and experiments. Sens Actuators A 95:227-233.         [ Links ]

[9] Forster F., Bardell R., Sharma N. (2001). Methods for making micropumps. US Patent 6227809 B1.         [ Links ]

[10] Morris C., Forster F. (2003). Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Syst 12:325-334.         [ Links ]

[11] Wackerle M., Bigus H.J., Blumenthal T.V., (2006). Micro pumps for lab technology and medicine, Final presentation of the project µ-DOS, Fraunhofer IZM, Munich.         [ Links ]

[12] FG Morris C.J. et al. (2000). Electronic cooling systems based on fixed-valve micropump networks, Transducers Research Foundation, Cleveland Heights, Ohio.         [ Links ]

[13] Shoji S. and Esashi M., (1994). Microflow devices and systems, Journal of Micromechanics and Microengineering, Vol. 4, pp. 157-171.         [ Links ]

[14] Kovacs G.T.A., (1998). Micromachined transducers sourcebook, New York, Mc Graw-Hill, pp. 839-855.         [ Links ]

[15] Morganti E. and Pignatel G.U., (2005). Microfluidics for the treatment of the hydrocephalus, 1st International Conference on Sensing Technology, November 21-23, Palmerston North, New Zealand, pp. 483-487.         [ Links ]

[16] Yoon H.J, Jung J.M., Jeong J.S. and Yang S.S. (2004). Micro devices for a cerebrospinal fluid (CSF) shunt system, Sensors and Actuators, A110, pp.68-76.         [ Links ]

[17] Forster F., Bardell R., Afromowitz M., Sharma N., Blanchard A. (1995) Design, fabrication and testing of fixed-valve micro-pumps. In: Proceedings of the ASME fluids engineering division.         [ Links ]

[18] Deshpande M., Gilbert J., Bardell R., Forster F. (1998). Design analysis of no-moving-parts valves for micropumps. J Microelectromech Syst DSC 66:153-158.         [ Links ]

[19] Bardell R.L., (2000). The diodicity mechanism of Tesla-type no-moving parts valves, Ph.D. Thesis, University of Washington, USA.         [ Links ]

[20] Nabavi, M., (2009). Steady and unsteady flow analysis in microdiffusers and micropumps: a critical review, Microfluid Nanofluid, 7:599-619.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License