SciELO - Scientific Electronic Library Online

vol.11 número3Experimental Estimation of Slipping in the Supporting Point of a Biped RobotGrid Multiscroll Hyperchaotic Attractors Based on Colpitts Oscillator Mode with Controllable Grid Gradient and Scroll Numbers índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.11 no.3 México jun. 2013


Computing the Euler Number of a Binary Image Based on a Vertex Codification


J. H. Sossa-Azuela1, R. Santiago-Montero2, M. Pérez-Cisneros3, E. Rubio-Espino1


1 Centro de Investigación en Computación-Instituto Politécnico Nacional Av. Juan de Dios Bátiz s/n, Mexico, DF, México.

2 Instituto Tecnológico de León Av. Tecnológico S/N, Frac. Julián de Obregón, León, Guanajuato, México.

3 Departamento de Ciencias Computacionales, Universidad de Guadalajara, CUCEI Av. Revolución 1500, Guadalajara, Jalisco, México.



We describe a method to compute the Euler number of a binary digital image based on a codification of contour pixels of the image's shapes. The overall procedure evolves from a set of lemmas and theorems, their demonstration and their numerical validation. The method is supported through an experimental set which analyzes some digital images and their outcome to demonstrate the applicability of the procedure. The paper also includes a discussion about present and futures steps on this research.

Keywords: binary shape description, Euler number, topological descriptor, topological invariant.



Se describe un método para el cálculo del número de Euler de una imagen digital binaria basado en una codificación del contorno de las formas en la imagen. El procedimiento tiene su base en un conjunto de lemas y teoremas, su demostración y su validación numérica. El método se soporta a través de una experimentación que analiza varias imágenes digitales para demostrar la aplicabilidad del procedimiento. El artículo incluye también una discusión acerca de pasos presentes y futuros de investigación.





R. Santiago and M. Pérez thank the ITL and the UDEG, respectively, for the support. H. Sossa thanks SIP-IPN and CONACYT for the economical supports under grants 20121311, 20131182 and 155014, respectively. E. Rubio thanks SIP-IPN for the support under grant 20131505. We all thank the reviewers for their comments on the improvement of this paper.



[1] T. Acharya, B. B. Bhattacharya, A. Bishnu, M. K. Kundu, Ch. A. Murthy. "Computing the Euler Number of a Binary Image". United States Patent 7027649 B1. April 11, 2006.         [ Links ]

[2] W. Al Faqheri and S. Masho-hor (2009). "A Real-Time Malaysian Automatic License Plate Recognition (M-ALPR) Using Hybrid Fuzzy", International Journal of Computer Science and Network Security, 9(2):333-340, 2009.         [ Links ]

[3] J. Athow, N. Abbasi and A. Amer. "A Real-Time FPGA Architecture of a Modified Stable Euler-Number Algorithm for Image Binarization". Technical Report 2009-1ATHOW Department of Electrical and Computer Engineering, Concordia University. January 2009.         [ Links ]

[4] H. Beri and W. Nef. "Algorithms for the Euler characteristic and related additive functionals of digital objects", Comput. Vision, Graphics Image Process. 28, 166-175, 1984.         [ Links ]

[5] H. Beri. "Computing the Euler characteristic and related additive functionals of digital objects from their beentree representation", Comput. Vision, Graphics Image Process. 40, 115-126, 1987.         [ Links ]

[6] A. Bishnu, B. B. Bhattacharya, M. K. Kundu, C.A. Murthy, T. Acharya. "On chip computation of Euler number of a binary image for efficient database search", Proc. of the International Conference on Image Processing (ICIP), Vol. III, pp. 310-313, 2001.         [ Links ]

[7] A. Bishnu, B. B. Bhattacharya, M. K. Kundu, C.A. Murthy, T. Acharya. "A pipeline architecture for computing the Euler number of a binary image". Journal of Systems Architecture 51(8):47-487, 2005.         [ Links ]

[8] E. Bribiesca. "A new chain code". Pattern Recognition 32:235-251, 1999.         [ Links ]

[9] E. Bribiesca. "Computation of the Euler number using the contact perimeter". Computers & Mathematics with Applications 60(5):364-1373, 2010.         [ Links ]

[10] M. H. Chen and P. F. Yan. "A fast algorithm to calculate the Euler number for binary images", Pattern Recognition Letters 8(12):295-297, 1988.         [ Links ]

[11] F. Chiavetta and V. Di Gesú. "Parallel computation of the Euler number via connectivity graph", Pattern Recognition Letters 14(11):849-859, 1993.         [ Links ]

[12] S. Dey, B. B. Bhattacharya, M.K. Kundu, T. Acharya. "A fast algorithm for computing the Euler number of an image and its VLSI implementation", in Proc. 13th International Conference on VLSI Design, pp. 330-335, 2000.         [ Links ]

[13] J. L. Díaz de León S. and H. Sossa. "On the computation of the Euler number of a binary object". Pattern Recognition, 29(3):471-476, 1996.         [ Links ]

[14] Ch. R. Dyer. "Computing the Euler number of an image from its quatree". Comput. Vision, Graphics Image Process. 13, 270-276, l 1980.         [ Links ]

[15a] A. Imiya, U. Eckhardt (1999). "The Euler Characteristics of Discrete Objects and Discrete Quasi-Objects". Computer Vision and Image Understanding, 75(3): 307-318.         [ Links ]

[15b] M. Kiderlen. "Estimating the Euler Characteristic of a planar set from a digital image". Journal of Visual Communication and Image Representation, 17(6):1237-1255, 2006.         [ Links ]

[16] W. Nagel, J. Ohser and K. Pischang. "An integral-geometric approach for the Euler-Poincare characteristic of spatial images". Journal of Microsc, 189:54-62, 2000.         [ Links ]

[16a] L. G. Nonato, A. Castelo Filho, R. Minghim, and J. Batista. "Morse Operators for Digital Planar Surfaces and their Application to Image Segmentation". IEEE Trans. On Image Proc. 13(2):216-227, 2004.         [ Links ]

[17] H. Samet et al. "Computing Geometric Properties of Images Represented by Linear Quadtrees". IEEE Trans. PAMI, 7(2):229-240, 1985.         [ Links ]

[18] L. Snidaro and G. L. Foresti. "Real-time Thresholding with Euler Numbers". Pattern Recognition Letters 24(910):1533-1544, 2003.         [ Links ]

[19] H. Sossa, E. Cuevas and D. Zaldivar. "Computation of the Euler Number of a Binary Image Composed of Hexagonal Cells". Journal of Applied Research and Technology 8(3):340-351, 2010.         [ Links ]

[19a] H. Sossa, E. Cuevas and D. Zaldivar. "Alternative Way to Compute the Euler Number of a Binary Image". Journal of Applied Research and Technology 9(3):335-341, 2011.         [ Links ]

[20] M. Vatsa, R, Singh, P. Mitra and A. Noore. "Signature Verification using Static and Dynamic Features". LNCS 3316. Springer-Verlag, Pp. 350-355, 2004        [ Links ]

[21] L. P. Wong and H. T. Ewe. "A Sutdy of Nodule Detection using Opaque Object Filter". Biomed 06. IFMBE Proceedings 15. Pp. 236-240, 2007.         [ Links ]

[22] L. Xiaozhu, Sh. Yun, J. Junwei and W. Yanmin. "A proof of image Euler Number formula". Science in China: Series F Information Sciences 49(3):364-371, 2006.         [ Links ]

[23] H. S. Yang and S. Sengupta. "Intelligent shape recognition for complex industrial tasks", IEEE Control Systems Magazine 8(3):23-29, 1988.         [ Links ]

[24] Z. Zhang, R. H. Moss and W. V. Stoecker. "A Novel Morphological Operator to Calculate Euler Number". International Workshop on Medical Imaging and Augmented Reality (MIAR 2001). Shatin, N.T., Hong Kong. June 10-June 12, 2001.         [ Links ]

[25] D. Zhang and G. Lu. "Review of shape representation and description techniques". Pattern Recognition, 37:1-19, 2004.         [ Links ]

[26] Ch. Zhang, Z. Qiu and D. Sun and J. Wu. "Euclidean Quality Assessment for Binary Images". 18th International Conference on Pattern Recognition, ICPR 2006. Pp. 300-303, 2006.         [ Links ]

[27] D. Zioua and M. Allilib. "Generating cubical complexes from image data and computation of the" Euler number. Pattern Recognition 35:2833-2839, 2002.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons