SciELO - Scientific Electronic Library Online

 
vol.11 número3Dynamic Self-Assessment of Supply Chains Performance: an Emerging Market ApproachComputing the Euler Number of a Binary Image Based on a Vertex Codification índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of applied research and technology

versão On-line ISSN 2448-6736versão impressa ISSN 1665-6423

J. appl. res. technol vol.11 no.3 Ciudad de México Jun. 2013

 

Experimental Estimation of Slipping in the Supporting Point of a Biped Robot

 

J.A. Vázquez*, M. Velasco-Villa

 

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN) Departamento de Ingeniería Eléctrica, Sección de Mecatrónica. Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, CP 07360 México DF, México, *javazquez@cinvestav.mx.

 

ABSTRACT

When developing a gait cycle on a low-friction surface, a biped robot eventually tends to slip. In general, it is common to overcome this problem by means of either slow movements or physical adaptations of the robot at the contact point with the walking surface in order to increase the frictional characteristics. In the case of slipping, several types of sensors have been used to identify the relative displacement at the contact point of the supporting leg with the walking surface for control purposes. This work is focused on the experimental implementation of a low-cost force sensor as a measurement system of the slipping phenomenon. It is shown how, supported on a suitable change of coordinates, the force measurement at the contact point is used to obtain the total displacement at the supporting point due to the low-friction conditions. This is an important issue when an accurate Cartesian task is required.

Keywords: biped robot, slipping, walking cycle.

 

RESUMEN

Cuando un robot bípedo desarrolla ciclos de marcha en una superficie con baja fricción, eventualmente tiende a patinar; sin embargo es común evitar este problema mediante ejecuciones de movimientos de baja velocidad o bien, mediante adaptaciones físicas en el punto de contacto con la superficie para aumentar las caractersticas de fricción. Cuando este fenómeno se presenta, la existencia y magnitud del desplazamiento relativo en el punto de contacto puede ser identificada a partir de una gran variedad de sensores. Este trabajo se enfoca en la medición del patinado descrito anteriormente a través de un sensor de fuerza de bajo costo. Se muestra además cómo, a través de un cambio de coordenadas, la lectura de la fuerza en el punto de contacto es utilizada para conocer la magnitud del desplazamiento en el apoyo debido al patinado.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] S.P. Bhat and D.S. Bernstein. Continuous Finite-Time Satabilization of the Translational and Rotational Double Integrators. IEEE Trans. on Automatic Control, vol. 43, no. 5, pp. 678-682, 1998.         [ Links ]

[2] G. N. Boone and J. K. Hodgins. Slipping and Tripping Reflexes for Bipedal Robots. Autonomous Robots, vol. 4, pp. 259-271, 1997.         [ Links ]

[3] J. Furusho and A. Sano. Sensor-Based Control of a Nine-Link Biped. International Journal of Robotics Research, vol. 9, no. 2, pp. 83-98, 1990.         [ Links ]

[4] J. W. Grizzle et al. Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Trans. Aut. Control, vol. 46, no. 1, pp. 51-64, 2001.         [ Links ]

[5] S. Kajita et al. Biped Walking on a Low Friction Floor. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Sendai, Japan, 2004, pp. 3546-3552.         [ Links ]

[6] K. Kaneko et al. Slip Observer for Walking on a Low Friction Floor. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2005, pp. 1457-1463.         [ Links ]

[7] C. Melchiorri. Slip Detection and Control Using Tactile and Force Sensors. IEEE/ASME Trans. on Mechatronics, vol. 5, no. 3, pp. 235-243, 2000.         [ Links ]

[8] Reza Olfati-Saber. Cascade Normal Forms for Underactuaded Mechanical Systems. In IEEE Conference on Decision and Control, Sydney, Australia, 2000, pp. 2162-2167.         [ Links ]

[9] J. H. Park and O. Kwon. Reflex Control of Biped robot Locomotion in a Slippery Surface. In IEEE Int. Conf. Robotics and Automation, Seoul, Korea, 2001, pp. 4134-4139.         [ Links ]

[10] F. Plestan et al. Stable Walking of a 7-DOF Biped Robot. IEEE Tran. Rob. and Autom., vol. 19, no. 4, pp. 653-668, 2003.         [ Links ]

[11] P. Sardain et al. An Anthropomorphic Biped Robot: Dynamic Concepts and Technological Design. IEEE Transactions on Systems, Man and Cybernetics-Part A: Systems and Humans, vol. 28, no. 6, pp. 823 -838, 1998.         [ Links ]

[12] M. W. Spong and M. Vidyasagar. Robot Dynamics and Control. John Wiler and Sons, USA, 1989.         [ Links ]

[13] M.W. Spong. The Control of Underactuated Mechanical Systems. In First International Conference on Mechatronics, Mexico City, Mexico, 1994.         [ Links ]

[14] Eric R. Westervelt et al. Feedback Control of Dynamic Bipedal Robot Locomotion. CRC Press, 2007.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons