SciELO - Scientific Electronic Library Online

 
vol.11 número2Performance Analysis of Dual Unipolar/Bipolar Spectral Code in Optical CDMA SystemsAdjacent Lane Detection and Lateral Vehicle Distance Measurement Using Vision-Based Neuro-Fuzzy Approaches índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.11 no.2 Ciudad de México abr. 2013

 

Mixed-Integer Constrained Optimization Based on Memetic Algorithm

 

Y. C. Lin

 

Department of Electrical Engineering WuFeng University Chiayi County, Taiwan, R.O.C. Chien-lin@wfu.edu.tw.

 

ABSTRACT

Evolutionary algorithms (EAs) are population-based global search methods. They have been successfully applied to many complex optimization problems. However, EAs are frequently incapable of finding a convergence solution in default of local search mechanisms. Memetic Algorithms (MAs) are hybrid EAs that combine genetic operators with local search methods. With global exploration and local exploitation in search space, MAs are capable of obtaining more high-quality solutions. On the other hand, mixed-integer hybrid differential evolution (MIHDE), as an EA-based search algorithm, has been successfully applied to many mixed-integer optimization problems. In this paper, a memetic algorithm based on MIHDE is developed for solving mixed-integer optimization problems. However, most of real-world mixed-integer optimization problems frequently consist of equality and/or inequality constraints. In order to effectively handle constraints, an evolutionary Lagrange method based on memetic algorithm is developed to solve the mixed-integer constrained optimization problems. The proposed algorithm is implemented and tested on two benchmark mixed-integer constrained optimization problems. Experimental results show that the proposed algorithm can find better optimal solutions compared with some other search algorithms. Therefore, it implies that the proposed memetic algorithm is a good approach to mixed-integer optimization problems.

Keywords: Evolutionary algorithm, memetic algorithm, mixed-integer hybrid differential evolution, Lagrange method.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Z. Michalewicz, "Genetic Algorithm + Data Structure = Evolution Programs", Springer-Verlag, 1994.         [ Links ]

[2] T. Back, D. Fogel and Z. Michalewicz, "Handbook of Evolutionary Computation", New York: Oxford Univ. Press, 1997.         [ Links ]

[3] A. Afkar, M. Mahmoodi-Kaleibar and A. Paykani, "Geometry optimization of double wishbone suspension system via genetic algorithm for handling improvement", Journal of Vibroengineering, vol. 14, pp. 827-837, 2012.         [ Links ]

[4] M. J. Richard, M. Bouazara, L. Khadir and G. Q. Cai, "Structural optimization algorithm for vehicle suspensions", Trans. Can. Soc. Mech. Eng., vol. 35, pp. 1-17, 2011.         [ Links ]

[5] F. Yaman and A. E. Yllmaz, "Impacts of genetic algorithm parameters on the solution performance for the uniform circular antenna array pattern synthesis problem", Journal of Applied Research and Technology, vol. 8, no. 3, pp. 378-394, 2010.         [ Links ]

[6] A. Vargas-Martínez and L. E. Garza-Castanon, "Combining artificial intelligence and advanced techniques in fault-tolerant control", Journal of Applied Research and Technology, vol. 9, no. 2, pp. 202-226, 2011.         [ Links ]

[7] R. Dawkins, "The Selfish Gene", Oxford Univ. Press, 1976.         [ Links ]

[8] W. E. Hart, N. Krasnogor and J. E. Smith, "Recent Advances in Memetic Algorithms", Springer-Verlag, 2005.         [ Links ]

[9] A. Quintero and S. Pierre, "A memetic algorithm for assigning cells to switches in cellular mobile networks", IEEE Commun. Lett., vol. 6, no. 11, pp. 484-486, 2002.         [ Links ]

[10] H. Ishibuchi, T. Yoshida and T. Murata, "Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling", IEEE Trans. Evol. Comput., vol. 7, no. 2, pp. 204-223, 2003.         [ Links ]

[11] M. Tang and X. Yao, "A memetic algorithm for VLSI floorplanning", IEEE Trans. Syst., ManCybern. B, Cybern., vol. 37, no. 1, pp. 62-69, 2007.         [ Links ]

[12] Y. C. Lin, K. S. Hwang and F. S. Wang, "A mixed-coding scheme of evolutionary algorithms to solve mixed-integer nonlinear programming problems", Computers and Mathematics with Applications, vol. 47, pp. 1295-1307, 2004.         [ Links ]

[13] Y. C. Lin, Y. C. Lin and K. L. Su, "Production planning based on evolutionary mixed-integer nonlinear programming", ICIC Express Letters, vol. 4, no. 5(B), pp. 1881-1886, 2010.         [ Links ]

[14] Y. C. Lin, Y. C. Lin, K. L. Su and W. C. Chang, "Identification of control systems using evolutionary neural networks", ICIC Express Letters, vol. 5, no. 4(B), pp. 1307-1312, 2011.         [ Links ]

[15] J. A. Nelder and R. Mead, "A simplex method for function minimization", Computer J., vol. 7, no. 4, pp. 308-313, 1965.         [ Links ]

[16] T. Yokota, M. Gen and Y. X. Li, "Genetic algorithm for non-linear mixed integer programming problems and its applications", Computers & Industrial Engineering J., vol. 30, pp. 905-917, 1996.         [ Links ]

[17] B. K. S. Cheung, A. Langevin and H. Delmaire, "Coupling genetic algorithm with a grid search method to solve mixed integer nonlinear programming problems", Comput. Math. Applic., vol. 34, pp. 13-23, 1997.         [ Links ]

[18] Y. J. Cao and Q. H. Wu, "Mechanical design optimization by mixed-variable evolutionary programming", in Proc. IEEE Int. Conf. Evolutionary Computation, Indianapolis, 1997, pp. 443-446.         [ Links ]

[19] E. Sandgren, "Nonlinear integer and discrete programming in mechanical design", ASME J. Mechanical Design, vol. 112, pp. 223-229, 1990.         [ Links ]

[20] D. A. Wismer and R. Chattergy, "Introduction to Nonlinear Optimization", Elsevier North-Holland, 1978.         [ Links ]

[21] J. S. Arora, A. I. Chahande and J. K. Paeng, "Multiplier methods for engineering optimization", Int. J. Numerical Methods in Engineering, vol.32, pp.1485-1525, 1991.         [ Links ]

[22] M. J. D. Powell, "Algorithms for nonlinear constraints that use Lagrangian functions", Math. Programming, vol. 14, pp. 224-248, 1978.         [ Links ]

[23] J. F. Fu, R. G. Fenton and W. L. Cleghorn, "A mixed integer-discrete-continuous programming method and its application to engineering design optimization", Engineering Optimization, vol.17, no. 3, pp.236-280, 1991.         [ Links ]

[24] C. Zhang and H. P. Wang, "Mixed-discrete nonlinear optimization with simulated annealing", Engineering Optimization, vol. 21, pp.277-291, 1993.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons