SciELO - Scientific Electronic Library Online

 
vol.11 número1Implementation of a 10.24 GS/s 12-bit Optoelectronics Analog-to-Digital Converter Based on a Polyphase Demultiplexing ArchitectureExperimental Studies on Intelligent, Wearable and Automated Wireless Mobile Tele-Alert System for Continuous Cardiac Surveillance índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.11 no.1 Ciudad de México feb. 2013

 

Elimination of Harmonics in Multilevel Inverters Connected to Solar Photovoltaic Systems Using ANFIS: An Experimental Case Study

 

T. R. Sumithira*1, A. Nirmal Kumar2

 

1 K.S.R College of Engineering, Tiruchengode. Tamil Nadu. India. *sumithra.trs@gmail.com.

2 Info Institute of Engineering Annur. Tamil Nadu, India.

 

ABSTRACT

In this study, a multilevel inverter was designed and implemented to operate a stand-alone solar photovoltaic system. The proposed system uses pulse-width modulation (PWM) in the multilevel inverter to convert DC voltage from battery storage to supply AC loads. In the PWM method, the effectiveness of eliminating low-order harmonics in the inverter output voltage is studied and compared to that of the sinusoidal PWM method. This work also uses adaptive neuro fuzzy inference (ANFIS) to predict the optimum modulation index and switch angles required for a five level cascaded H-bridge inverter with improved inverter output voltage. The data set for the ANFIS-based analysis was obtained with the Newton-Raphson (NR) method. The proposed predictive method is more convincing than other techniques in providing all possible solutions with any random initial guess and for any number of levels of a multilevel inverter. The simulation results prove that the lower-order harmonics are eliminated using the optimum modulation index and switching angles. An experimental system was implemented to demonstrate the effectiveness of the proposed system.

Keywords: multilevel inverters, harmonic elimination, adaptive neuro-fuzzy inference system, Newton-Raphson method, genetic algorithm.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] S. Alepuz, et.al. "Interfacing renewable energy sources to the utility grid using a three-level inverter," IEEE Trans. on Ind. Electron, vol. 53,no. 5, pp. 1504-1511, 2006.         [ Links ]

[2] V. G. Agelidis, A. Balouktsis, and M. S. A. Dahidah, "A five-level symmetrically defined selective harmonic elimination PWM strategy: Analysis and experimental validation," IEEE Trans. Power Electron., vol. 23, no. 1, pp. 19-26, 2008.         [ Links ]

[3] A.K. AI-Othman and Tamer H. Abdel hamid., "Elimination of Harmonics in Multilevel Inverters with Non-Equal DC Sources Using PSO.," Elsevier Energy Conversion and Management, 2009.         [ Links ]

[4] J. N. Chiasson et.al. "Control of a multilevel converter using resultant theory," IEEE Trans. Control Syst. Technol., vol. 11, no. 3, pp. 345-354, 2003.         [ Links ]

[5] J. N. Chiasson et.al. "A unified approach to solving the harmonic elimination equations in multilevel converters," IEEE Trans. Power Electron., vol. 19, no. 2, pp. 478-490, 2004.         [ Links ]

[6] J. N. Chiasson et.al., "Elimination of harmonics in a multilevel converter using the theory of symmetric polynomials and resultants," IEEE Trans. Control Syst. Technol., vol. 13, no 2, pp. 216-223, 2005.         [ Links ]

[7] J. N. Chiasson et.al. "The use of power sums to solve the harmonic elimination equations for multilevel converters," Eur. Power Elect. Drives, vol. 15, no. 1, pp. 19-27, 2005.         [ Links ]

[8] P.N. Enjeti, "Programmed PWM Techniques to Eliminate Harmonics: A Critical Evaluation," IEEE Trans. Industry Applications, vol. 26, no. 2, pp. 302-316, 1990.         [ Links ]

[9] M.S. Dahidah and V. G. Agelidis, "Selective harmonics elimination PWM control for cascaded multilevel voltage source converters: A generalized formula," IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1620-1630, 2008.         [ Links ]

[10] J. Kumar, B. Das and A. Pramod, "Selective Harmonic Elimination Technique for a Multilevel Inverter," Proceedings of Fifteenth National Power Systems Conference (NPSC), Bombay, 2008, pp 608-613.         [ Links ]

[11] Fang Zheng Peng et al, "A Multilevel Voltage-Source Inverter with Separate DC Sources for Static Var Generation," IEEE Trans. on Ind Applications, vol. 32, no. 5, pp. 1130-1138, 1996.         [ Links ]

[12] L.M. Tolbert et.al, "Multilevel converters for large electric drives," IEEE Trans. on Ind Applications, vol. 35, no. 1, pp. 36-44, 1999.         [ Links ]

[13] Iwaszkiewicz Jan and Perz Jacek, "Fourier Series and Wavelet Transform Applied to Stepped Waveforms Synthesis in Multilevel Convertors," Proceedings of Electro technical Institute, 2006, pp. 59-74.         [ Links ]

[14] J. Wang , Y. Huang, and F. Z. Peng, "A practical harmonics elimination method for multilevel inverters," Conf. Rec. IEEE IAS Annu. Meeting, 2005, pp. 1665-1670.         [ Links ]

[15] J. Vassallo, J. C. Clare, and P. W. Wheeler, "Powerequalized harmonic-elimination scheme for utility-connected cascaded H-bridge multilevel converters," Proc. 29th IEEE IECON, 2003, pp. 1185-1190.         [ Links ]

[16] M. Malinowski et.al, "A survey on cascaded multilevel inverters," IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2197-2206, 2009.         [ Links ]

[17] S. Ledesma-Orozco et.al., "Hurst Parameter Estimation Using Artificial Neural Networks," J. of Appl. Res and Tech, vol. 9, no. 2, pp. 227-241, 2011.         [ Links ]

[18] C. Hernandez-Rosales et.al, "A standard microcontroller based discrete-time pi for controlling the motion of a dc-gear motor, " J. of App Res and Tech, vol. 1 no. 1, pp. 44-52, 2005.         [ Links ]

[19] T.R. Sumithira, A. Nirmal Kumar, and R. Rameshkumar, "An adaptive neuro-fuzzy inference system (ANFIS) based Prediction of Solar Radiation," J. of App. Sci. Res, vol 8, no 1, pp 346-351,2012.         [ Links ]

[20] T.R. Sumithira, and A. Nirmal Kumar, "Prediction of monthly global solar radiation using adaptive neuro fuzzy inference system (ANFIS) technique over the stste of Tamilnadu(India): a comparative study," App. Sol .Energy(Springer), vol 48,No 2,pp 140-145, 2012.         [ Links ]

[21] Jose Rodriguez, J.S. Lai, and F. Z. Peng," Multilevel Inverters: A Survey of Topologies, Controls, and Applications," IEEE Trans. on Industrial Electronics, vol. 49, no. 4, pp. 724-738, 2002.         [ Links ]

[22] S. Kouro et.al, "Recent advances and industrial applications of multilevel converters, " IEEE Trans. on Ind. Electron., vol. 57, no. 8, pp. 2553-2580, 2008.         [ Links ]

[23] F. Z. Peng, J. W. McKeever, and D. J. Adams, "Cascade Multilevel Inverters for Utility Applications", IECON Proceedings (Industrial Electronics Conference), 1997, pp. 437-442.         [ Links ]

[24] L. M. Tolbert, F. Z. Peng, and T. G. Habetler, "Multilevel PWM methods at low modulation indices," IEEE Trans. Power Electron., vol. 15, no. 4, pp. 719-725, 2000.         [ Links ]

[25] N. Mohan. T. R. Undeland, W. P. Robbins. Power Electronics. Converters, applications and design. John Wiley & Sons. 2003.         [ Links ]

[26] G. Carrara, S. Gardella, M. Marchesoni, R. Salutari, G. Sciutto, "A New Multilevel PWM Method: A Theoretical Analysis," in Proc. IEEE Power Electron. Specialist Conf. (PESC), 1990, pp. 363-371.         [ Links ]

[27] B. Ozpineci, L. M. Tolbert, J. N. Chiasson, "Harmonic optimization of multilevel converters using Genetic Algorithms," IEEE Power Electronics Letters, vol. 3, no. 3, pp. 92-95, 2005.         [ Links ]

[28] Übeyli, E. D et.al, "Adaptive neuro-fuzzy inference system employing wavelet coefficients for detection of ophthalmic arterial disorders," Expert Systems with Applications, vol.34, no 3, 2008.         [ Links ]

[29] Y.M. Wang, M.S. Taha, and T.M. Elhag, "An adaptive neuro-fuzzy inferencesystem for bridge risk assessment," Expert Systems with Applications, vol.4 no.3, pp 3099-3106, (2008).         [ Links ]

[30] E. Avci, and D. Avci, "The performance comparison of discrete wavelet neuralnetwork and discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition." Expert Systems with Applications, vol.33, no 3. 2007.         [ Links ]

[31] E. Avci, D. Hanbay, and A. Varol, "An expert discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition." Expert Systems with Applications, vol.33, no.3, pp 582-589, 2007.         [ Links ]

[32] M.J.L Aznarte et.al, "Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models." Expert Systems with Applications, vol.32. no.4, pp. 1218-1225, 2007.         [ Links ]

[33] M. Sorousha, and A. B. Parisa, "Intelligent scenario generator for business strategic planning by using ANFIS'" Expert Systems with Applications, vol 36, pp 7729-7737, 2009.         [ Links ]

[34] A. Ozturk, A. Arslan, and F. Hardalac, "Comparison of neuro-fuzzy systems for classification of transcranial doppler signals with their chaotic invariant measures," Expert Systems with Applications, vol.34, no 2., 2008.         [ Links ]

[35] C. Elmas, O.Ustun, and H.Sayan, "A neuro-fuzzy controller for speedcontrol of a permanent magnet synchronous motor drive'" Expert Systems with Applications, vol.34, no.1., 2008.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons