SciELO - Scientific Electronic Library Online

 
vol.11 número1Experimental Assessment of Derating Guidelines Applied to Power Electronics ConvertersElimination of Harmonics in Multilevel Inverters Connected to Solar Photovoltaic Systems Using ANFIS: An Experimental Case Study índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of applied research and technology

versão On-line ISSN 2448-6736versão impressa ISSN 1665-6423

J. appl. res. technol vol.11 no.1 Ciudad de México Fev. 2013

 

Implementation of a 10.24 GS/s 12-bit Optoelectronics Analog-to-Digital Converter Based on a Polyphase Demultiplexing Architecture

 

C. Villa-Angulo*1, I. O. Hernandez-Fuentes2, R. Villa-Angulo3, S. E. Ahumada-Valdez4, R. A. Ramos-Irigoyen5, E. Donkor6

 

1 Instituto de Ingeniería Universidad Autónoma de Baja California Mexicali, B. C., México. *villac@uabc.edu.mx.

2 Instituto de Ingeniería Universidad Autónoma de Baja California Mexicali, B. C., México.

3 Instituto de Ingeniería Universidad Autónoma de Baja California Mexicali, B. C., México.

4 Instituto de Ingeniería Universidad Autónoma de Baja California Mexicali, B. C., México.

5 Instituto de Ingeniería Universidad Autónoma de Baja California Mexicali, B. C., México.

6 Department of Electrical & Computer Engineering University of Connecticut Storrs, CT., USA.

 

ABSTRACT

In this paper we present the practical implementation of a high-speed polyphase sampling and demultiplexing architecture for optoelectronics analog-to-digital converters (OADCs). The architecture consists of a one-stage divideby-eight decimator circuit where optically-triggered samplers are cascaded to sample an analog input signal, and demultiplex different phases of the sampled signal to yield low data rate for electronic quantization. Electrical-in to electrical-out data format is maintained through the sampling, demultiplexing and quantization processes of the architecture thereby avoiding the need for electrical-to-optical and optical-to-electrical signal conversions. We experimentally demonstrate a 10.24 giga samples per second (GS/s), 12-bit resolution OADC system comprising the optically-triggered sampling circuits integrated with commercial electronic quantizers. Measurements performed on the OADC yielded an effective bit resolution (ENOB) of 10.3 bits, spurious free dynamic range (SFDR) of -32 dB and signal-to-noise and distortion ratio (SNDR) of 63.7 dB.

Keywords: optoelectronics analog-to-digital converter (ADC), poly-phase conversion scheme, self-synchronized sampling, demultiplexing process.

 

RESUMEN

En este artículo se presenta la implementación de una arquitectura de muestreo y demultiplexación polifásica para implementarse en convertidores analógico digitales optoelectrónicos de alta velocidad (OADCs). La arquitectura consta de circuitos muestreadores activados ópticamente conectados en cascada. La arquitectura muestrea una señal analógica y posteriormente demultiplexa diferentes muestras (canaliza) para reducir la velocidad de repetición de las mismas y así la cuantización pueda realizarse con circuitos electrónicos de baja velocidad. Una característica importante de esta arquitectura es que la señal analógica es conservada en el dominio eléctrico durante el proceso de muestreo, demultiplexación y cuantización, evitando la necesidad de los procesos de conversión de eléctrica a óptica y de óptica a eléctrica comúnmente usados en OADCs. Experimentalmente se implementó un sistema OADC de 10.24 giga muestras por segundo (GM/s) con 12 bits de resolución. Mediciones demuestran una resolución efectiva (ENOB) de 10.3 bits, rango dinámico libre de espurios (SFDR) de -32 dB, y señal a ruido y distorsión (SNDR) de 63.7 dB.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] C. Valley, "Photonics analog-to-digital converters", Optical Society of America, Optics Express, Vol. 15, No. 5, pp. 1955-1982, 2007.         [ Links ]

[2] C. Villa-Angulo, et. al, "Bit-Resolution Improvement of an Optically Sampled Time-Interleaved Analog-to-Digital Converter Based on Data Averaging", IEEE trans. In Inst. & Meas., Vol. 61, No. 4, pp. 1099-1104, 2012.         [ Links ]

[3] E. Donkor, et. al., "A 2.5 Gb/s flash all-optical analog-to-digital converter" IEEE LEOS Annu. Meeting Proc. Vol. 1, pp 204-205, 2000.         [ Links ]

[4] M. Johansson, B. Lofving, S. Hard, L. Thylen, M. Mokhtari, "Study of an ultrafast analog-to-digital convertes scheme based on diffractive optics", Applied Optics, vol. 39, pp 2881-2887, 2000.         [ Links ]

[5] J. U. Kang, R. D. Esma, "Demonstration of time interweaved photonic four-channel WDM sampler for hybrid analogue-digital converter", Electron letter, vol. 35, pp 60, 1999.         [ Links ]

[6] T. Konishi, K. Tanimura, K. Asao, Y. Aoshita, Y. Ichioka, "All-optical analog-to-digital converter by use of self-frequency shifting in fiber and pulseshapping technique", Journal of Opt. Soc. Vol 19, pp.2817-2823, 2002.         [ Links ]

[7] C. Xu., X. Liu, "Photonic analog-to-digital converter using soliton self-frequency shifts and interleaving spectral filters", Optics Letter, vol. 28, pp. 986-988, 2003.         [ Links ]

[8] Yan Han and Bahram Jalali, "Photonic Time-Stretched Analog-to-Digital Converter: Fundamental Concepts and Practical Considerations", IEEE Journal of Lightwave Technol., vol. 21, pp. 3085-3103, 2003.         [ Links ]

[9] S. Oda, A. Maruta, "A novel quantization scheme by slicing supercontinuum spectrum for all-optical analog-to-digital conversion", IEEE Photonics Tech. Lett. Vol. 17, pp. 465-467, 2005.         [ Links ]

[10] K. Ikeda, J. Abdul, S. Namiki, K. Kitayame, "Optical quantization and coding for ultrafast A/D conversion using nonlinear fiber-optic switches based on Sagnac interferometer", Opt. Express, vol 13, pp. 4296-4302, 2005.         [ Links ]

[11] M. Currie, "Optical quantization of microwave signals via distributed phase modulation", IEEE Journal of Lightwave Technol., vol. 23, pp. 327-833, 2005.         [ Links ]

[12] H. Sakata, "Photonic analog-to-digital conversion by use of nonlinear Fabry Perot resonators", Apply Optics, vol. 40, pp. 240-248, 2001.         [ Links ]

[13] E. F. Pinzón-Escobar and G. E. Sandoval-Romero, "Experimental Results of the Superluminescent Fiber Laser Sources for Fiber Optic Sensors", Journal of Applied Research and Technology (JART), Vol. 10, No. 1, pp. 20-27, 2012.         [ Links ]

[14] A. Arvizu-Mondragón, et. al., "Optical Communication Receiver Based on a Switched -Quadrature Costas Loop", Journal of Applied Research and Technology (JART), Vol. 9, No. 3, pp. 443-455, 2011.         [ Links ]

[15] J. Rodriguez, et. al, "Application of nonlinear compensation to limit input dynamic range in analog optical fiber links", Journal of Applied Research and Technology (JART), Vol. 8, No. 2, pp. 211-226, 2010.         [ Links ]

[16] C. Kouloumentas, et. al., "Repetition Rate Multiplication of Pseudorandom Bit Sequences", IEEE Phot. Tech. Let., Vol. 21, pp. 456-458, 2009.         [ Links ]

[17] C. Villa, et. al., "Demonstration of a Self-Synchronized Polyphase Sampling and Demultiplexing Scheme for Radio-Frequency Analog Signals", IEEE Phot. Tech. Let., Vol. 20, pp. 452-454, 2008.         [ Links ]

[18] C. Villa, et. al, "Optoelectronics encoder for a 12-bits 1.28-GSPS Analog-to-Digital converter", IEEE Phot. Tech. Let., Vol. 21, No. 27, pp. 1238-1240, 2009.         [ Links ]

[19] R. H. Walden, "Analog-to-Digital Conversion in the 21st century", presented at the MTT IMS WMK, Honolulu, June, 2007.         [ Links ]

[20] P. W. Juodawlkis, et. al., "Optically Sampled Analog-to-Digital Converters", IEEE Trans. Microwave Theory Tech., vol. 49, pp 1840-1853, 2001.         [ Links ]

[21] E. Donkor, "All-Optical high speed analog to digital conversion of optically sampled signals", SPIE Proc. Vol 4042, pp.61-65, 2000.         [ Links ]

[22] B. L. Shoop, "Photonic Analog-to-Digital Conversion" 2001, Springer.         [ Links ]

[23] S. Oda, A. Maruta, "A novel quantization scheme by slicing supercontinuum spectrum for all-optical analogtodigital conversion", IEEE Photonics Tech. Lett. Vol. 17, pp. 465-467, 2005.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons