SciELO - Scientific Electronic Library Online

 
vol.11 número1The Event Management Problem in a Container TerminalImplementation of a 10.24 GS/s 12-bit Optoelectronics Analog-to-Digital Converter Based on a Polyphase Demultiplexing Architecture índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of applied research and technology

versão On-line ISSN 2448-6736versão impressa ISSN 1665-6423

J. appl. res. technol vol.11 no.1 Ciudad de México Fev. 2013

 

Experimental Assessment of Derating Guidelines Applied to Power Electronics Converters

 

S. E. De León-Aldaco*1, J. H. Calleja-Gjumlich2, H. R. Jiménez-Grajales3, F. I. Chan-Puc4

 

1 Departamento de Ingeniería Electrónica Centro Nacional de Investigación y Desarrollo Tecnológico Cuernavaca, Mor., México. *susana.deleon@cenidet.edu.mx.

2 Departamento de Ingeniería Electrónica Centro Nacional de Investigación y Desarrollo Tecnológico Cuernavaca, Mor., México.

3 Gerencia de Energías no Convencionales Instituto de Investigaciones Eléctricas Cuernavaca, Mor., México.

4 División de Ciencias e Ingeniería Universidad de Quintana Roo Chetumal, Q. Roo., México.

 

ABSTRACT

Power transistors are the most vulnerable components in switching converters, and derating is usually applied to increase their reliability. In this paper, the effectiveness of derating guidelines is experimentally assessed using a push-pull DC-DC converter as a case study, operating in three different environments. After measuring the electrical variables and temperature, reliability was predicted following the guidelines in MIL HDBK 217F. The sensitivity analysis performed indicates that temperature has the largest impact on reliability, followed by environment and device quality. The results obtained demonstrate that a derating procedure based solely on DC ratings does not ensure an adequate performance. Therefore, additional guidelines are suggested to help increase the overall reliability obtained from a power circuit.

Keywords: reliability, derating, power converters.

 

RESUMEN

En convertidores conmutados, los transistores de potencia son los componentes más vulnerables; para mejorar su confiabilidad es común el empleo de técnicas de sobre-dimensionamiento. En este artículo, la efectividad del sobredimensionamiento se valora de manera experimental, utilizando un convertidor CD-CD tipo push-pull como caso de estudio, operando en tres ambientes diferentes. La confiabilidad se predijo siguiendo el procedimiento en el MIL HDBK 217F, utilizando las mediciones de las variables eléctricas y temperatura. El análisis de sensitividad indica que la temperatura tiene el mayor impacto en la confiabilidad, seguido por el ambiente y la calidad de los dispositivos. Los resultados demuestran que un proceso de sobredimensionamiento basado únicamente en las especificaciones de CD no garantiza un comportamiento adecuado. Se proponen lineamientos adicionales para aumentar la confiabilidad de los circuitos de potencia.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] P. Kales. Reliability for Technology, Engineering and Management. Prentice-Hall, 1998. pp. 7-13.         [ Links ]

[2] O'Connor, P.. "Practical Reliability Engineering". John Wiley and Sons, 2002, pp. 414-452.         [ Links ]

[3] Yang S., Bryant A., Mawby P., Xiang D., Ran L., and Tavner P. An Industry-Based Survey of Reliability in Power Electronic Converters. IEEE Transactions on Industry Applications, Vol. 47, No. 3, May/June, 2011, pp. 1441-1451.         [ Links ]

[4] Ireson, W., Coomb, C., Moss, R. Handbook of reliability Engineering and Management. McGraw-Hill, 1996. pp. 5.1-5.16.         [ Links ]

[5] F. Chan F., Calleja H., and Martinez E. Grid connected PV systems: A reliability-based comparison. IEEE International Symposium on Industrial Electronics, 2006, pp. 1583-1588. Montreal, Canada, August.         [ Links ]

[6] Aten M., Towers G., Whitley C., Wheeler P., Clare J., and Bradley K. Reliability Comparison of Matrix and Other Converter Topologies. IEEE Transactions on Aerospace and Electronics Systems Vol. 42, No. 3, July 2006, pp. 867-875.         [ Links ]

[7] Julian A., and Oriti G. A Comparison of Redundant Inverter Topologies to Improve Voltage Source Inverter Reliability. IEEE Transactions on Industry Applications, Vol. 43, No. 5, September/October 2007, pp. 1371-1378.         [ Links ]

[8] Ranjbar A., Abdi B., Nabavi-Niaki S., Gharehpetian G., and Milimonfared J. Reliability Comparison of Fuel-Cell DC-DC Converter in Two Cases of Using IPM Switch and Paralleling MOSFETs. Power electronics Specialists Conference, 2008, pp. 3723-3727, Rhodes, Greece, June.         [ Links ]

[9] Zhou L., Smedley, K. Reliability comparison of multilevel inverters for motor drive. Power & Energy Society General Meeting, 2009, pp. 1-7. 2009, Calgary, Canada, July.         [ Links ]

[10] Arifujjaman, M.; Iqbal, M., Quaicoe, J. A Comparative Study of the Reliability of the Power Electronics in Grid Connected Small Wind Turbine Systems. Canadian Conference on Electrical and Computer Engineering, 2009, pp. 394-397, St. John, Canada, May.         [ Links ]

[11] A. Ranjbar, B. Abdi, G. Gharehpetian, and B. Fahimi. Reliability Assessment of Single-Stage/Two-Stage PFC Converters. International Conference-Workshop on Compatibility and Power Electronics, 2009, pp. 253-257. Badajoz, Spain, May.         [ Links ]

[12] A. Abdi, J. Ranjbar, G. Milimonfared, G. Gharehpetian. Reliability Comparison of Boost PFC Converter in DCM and CCM Operating Modes, International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2008. pp. 939-943, Naples, Italy, June.         [ Links ]

[13] Hirschmann D., Tissen D., Schröder S., and de Doncker R., Reliability Prediction for Inverters in Hybrid Electrical Vehicles. IEEE Transactions on Power Electronics, Vol. 22, No. 6, November 2007, pp. 2511-2516.         [ Links ]

[14] Space product assurance. Derating -EEE components (ECSS-Q-ST-30-11C Rev.1 - PR-Draft 1). European Space Agency, Requirements & Standards Division. The Netherlands, 2010.         [ Links ]

[15] Military Handbook MIL HDBK 217F: Reliability Prediction of Electronic Equipment. USA Department of Defense. Washington, USA, 1991. December. Available at http://snebulos.mit.edu/projects/reference/MILSTD/MIL-HDBK-217F-Notice2.pdf.         [ Links ]

[16] C. Aguilar Castillo, García Beltrán, C. D. and Morcillo Herrera, C., "Digitally Controlled Integrated Electronic Ballast with Dimming and Power Factor Correction Features " Journal of Applied Research and Technology vol. 8 No. 3, pp. 295-309, Diciembre 2010.         [ Links ]

[17] J. Rodríguez Reséndiz, Gutiérrez Villalobos, J. M., Duarte Correa, D., Mendiola Santibañez, J. D. and Santillán Méndez, I. M., "Design and Implementation of an Adjustable Speed Drive for Motion Control Applications " Journal of Applied Research and Technology, vol. Vol. 10 No.2, pp. 180-194, April 2012.         [ Links ]

[18] Pressman A., Billings K., Moray T. Switching Power Supply Design. Third edition. McGraw-Hill, 2009. pp. 45-75.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons