SciELO - Scientific Electronic Library Online

 
vol.10 número6A Comparison of Redundancy Techniques for Private and Hybrid Cloud StorageA Recurrent Neural Network for Warpage Prediction in Injection Molding índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.10 no.6 Ciudad de México dic. 2012

 

Panchromatic Satellite Image Classification for Flood Hazard Assessment

 

Ahmed Shaker*1, Wai Yeung Yan1, Nagwa El-Ashmawy1,2

 

1 Department of Civil Engineering, Ryerson University, Toronto, Ontario, Canada. *ahmed.shaker@ryerson.ca.

2 Survey Research Institute, National Water Research Center, Cairo, Egypt.

 

ABSTRACT

The study aims to investigate the use of panchromatic (PAN) satellite image data for flood hazard assessment with an aid of various digital image processing techniques. Two SPOT PAN satellite images covering part of the Nile River in Egypt were used to delineate the flood extent during the years 1997 and 1998 (before and after a high flood). Three classification techniques, including the contextual classifier, maximum likelihood classifier and minimum distance classifier, were applied to the following: 1) the original PAN image data, 2) the original PAN image data and grey-level co-occurrence matrix texture created from the PAN data, and 3) the enhanced PAN image data using an edge-sharpening filter. The classification results were assessed with reference to the results derived from manual digitization and random checkpoints. Generally, the results showed improvement of the calculation of flood area when an edge-sharpening filter was used. In addition, the maximum likelihood classifier yielded the best classification accuracy (up to 97%) compared to the other two classifiers. The research demonstrates the benefits of using PAN satellite imagery as a potential data source for flood hazard assessment.

Keywords: Panchromatic imagery, flood hazard assessment, texture analysis, image classification.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

 References

[1] Benediktsson, J.A., Chanussot, J. & Moon, W.M., Very High-Resolution Remote Sensing: Challenges and Opportunities. Proceedings of the IEEE, Vol. 100, No. 6, June, 2012, pp. 1907-1910.         [ Links ]

[2] DigitalGlobe, Wordview-2 Satellite [online]. WWF http://www.digitalglobe.com WorldView-2, Accessed on November 2011.         [ Links ]

[3] Rogan J. & Chen D.M., Remote Sensing Technology for Mapping and Monitoring Land-cover and Land-use Change, Progress in Planning, Vol. 61, No. 4, May, 2004, pp. 301-325.         [ Links ]

[4] Joyce K.E., Belliss S.E., Samsonov S.V., McNeill S.J. & Glassey P.J., A Review of the Status of Satellite Remote Sensing and Image Processing Techniques for Mapping Natural Hazards and Disasters, Progress in Physical Geography, Vol. 33, No. 2, April, 2009, pp. 183-207.         [ Links ]

[5] Wang L. & Qu J.J., Satellite Remote Sensing Applications for Surface Soil Moisture Monitoring: A Review, Frontiers Earth Science in China, Vol. 3, No. 2, June, 2009, pp. 237-247.         [ Links ]

[6] Xie Y., Sha Z. & Yu M., Remote Sensing Imagery in Vegetation Mapping: A Review, Journal of Planet Ecology, Vol. 1, No. 1, March, 2008, pp. 9-23.         [ Links ]

[7] Sacristán-Romero F., Technological Support for Ecology. Journal of Applied Research and Technology, Vol. 5, No. 3, December, 2007, pp. 160-169.         [ Links ]

[8] Simone G., Farina A., Morabito F.C., Serpico S.B. & Bruzzone L., Image Fusion Techniques for Remote Sensing Applications, Information Fusion, Vol. 3, No. 1, March, 2002, pp. 3-15.         [ Links ]

[9] Zhang Y., Understanding Image Fusion, Photogrammetric Engineering & Remote Sensing, Vol. 70, No. 6, June, 2004, pp. 657-661.         [ Links ]

[10] Shaker A., Shi W. Z. & Emam, H., The Use of Empirical Methods in Topographic Map Production of IRS-1D Images, The Annual Conference of American Society of Photogrammetry and Remote Sensing, Anchorage, Alaska, USA, May 5-9, 2003.         [ Links ]

[11] Segl L. & Kaufmann H., Detection of Small Objects from High Resolution Panchromatic Satellite Imagery based on Supervised Image Segmentation, IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 9, September, 2001, pp. 2080-2083.         [ Links ]

[12] Luo J., Ming D., Liu W., Shen Z., Wang M. & Sheng H., Extraction of Bridges over Water from IKONOS Panchromatic Data, International Journal of Remote Sensing, Vol. 28, No. 16, August, 2007, pp. 3633-3648.         [ Links ]

[13] Corbane C., Marre F. & Petit M., Using SPOT-5 HRG Data in Panchromatic Mode for Operational Detection of Small Ships in Tropical Area, Sensors, Vol. 8, No. 5, May 2008, pp. 2959-2973.         [ Links ]

[14] Shaker A., Yan W.Y. & Easa S.M., Using Stereo Satellite Imagery for Topographic and Transportation Applications: An Accuracy Assessment, GIScience and Remote Sensing, Vol. 47, No. 3, September, 2010, pp. 321-337.         [ Links ]

[15] Zhang Q., Wang J., Gong P. & Shi P., Study of Urban Spatial Patterns from SPOT Panchromatic Imagery Using Textural Analysis, International Journal of Remote Sensing, Vol. 24, No. 21, November, 2003, pp. 4137-4160.         [ Links ]

[16] Tso B. & Mather, P.M., Classification Methods for Remotely Sensed Data, Second Edition, CRC Press, 2009, pp. 376.         [ Links ]

[17] Shaker A., Yan W.Y., Wong M. S., El-Ashmawy N. & Haddad B. I., Flood Hazard Assessment using Panchromatic Satellite Imagery. The XXI Congress of the International Society for Photogrammetry and Remote Sensing, 2008, pp. 881-886, Beijing, China, July 3-11, 2008.         [ Links ]

[18] Shaban M.A., & Dikshit O., Improvement of Classification in Urban Areas by the use of Textural Features the Case Study of Lucknow City, Uttar Pradesh. International Journal of Remote Sensing, Vol. 22, No. 4, 2001, pp. 565-593.         [ Links ]

[19] Baldridge A.M., Hook S.J., Grove C.I. & Rivera G., The ASTER Spectral Library Version 2.0, Remote Sensing of Environment, Vol. 113, No. 4, April, 2009, pp. 711-715.         [ Links ]

[20] Jensen, J., Introductory Digital Image Processing, 3/e, Prentice Hall, Upper Saddle River, New Jersey, ISBN 0-13-1453361-0: 526p, 2005.         [ Links ]

[21] Marceau D.J., Howarth P.J., Dubois J-M. M. & Gratton D.J., Evaluation of the Grey-Level Co-Occurrence Matrix Method for Land Cover Classification using SPOT Imagery, IEEE Transactions Geoscience and Remote Sensing, Vol. 28, No. 4, July, 1990, pp. 513-519.         [ Links ]

[22] Narasimha Rao P.V., Sesha Sai M.V.R., Sreenivas K., Krishna Rao M.V., Rao B.R.M., Dwivedi R.S. & Venkataratnam L., Textural Analysis of IRS-1D Panchromatic Data for Land Cover Classification, International Journal of Remote Sensing, Vol. 23, No. 17, 2002, pp. 3327-3345.         [ Links ]

[23] Haralick R. M., Dinstein I. & Shanmugam K., Texture Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, No. 6, November, 1973, pp. 610-621.         [ Links ]

[24] Baraldi A. & Parmiggiani F., An Investigation of the Textural Characteristics Associated with Gray Level Cooccurrence Matrix Statistical Parameters, IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 2, March, 1995, pp. 293-304.         [ Links ]

[25] Soh L. K. & Tsatsoulis C., Texture Analysis of SAR Sea Ice Imagery using Gray Level Co-occurrence Matrices, IEEE Transactions on Geoscience and Remote Sensing, Vol. 37, No. 2, March, 1999, pp. 780-795.         [ Links ]

[26] Gong P. & Howarth P. J., Frequency-Based Contextual Classification and Gray-Level Vector Reduction for Land-Use Identification, Photogrammetric Engineering and Remote Sensing, Vol. 58, No. 4, April, 1992, pp. 423-437.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons