SciELO - Scientific Electronic Library Online

 
vol.10 número5Studies of the Precessing Vortex Core in Swirling FlowsPseudorandom Sequences in Spread-Spectrum Communications Generated by Cellular Automata índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of applied research and technology

versão On-line ISSN 2448-6736versão impressa ISSN 1665-6423

J. appl. res. technol vol.10 no.5 Ciudad de México Out. 2012

 

Concurrent Dynamic Visualizations With Expressive Petri Net Representations to Enrich the Understanding of Biological and Pathological Processes: an Application to Signaling Pathways

 

F. Ramos*1, C. Hallal2, A. Nieto3, D. García4, J. Berúmen5, D. Escárcega*6

 

1, 4, 6 Tecnológico de Monterrey, Campus Cuernavaca. Autopista del Sol Km 104+060. Col. Real del Puente, C.P. 62790, Xochitepec, Morelos, México.*fernando.Ramos@itesm.mx; *daescarcega@gmail.com

2, 3 Universidad Autónoma del Estado de Morelos. Facultad de Farmacia, Av. Universidad 1001. Col. Chamilpa. Cuernavaca, Morelos. C. P. 62209.

5 Hospital General de México. Dr. Balmis 148, Colonia Doctores, delegación Cuauhtémoc, C.P. 06726, México, D.F.

 

Abstract

Dynamic visualizations and expressive representations are needed in systems biology to handle multiple interactions occurring during the biological processes of biopathway representations. Dynamic visualizations allow users an ease of interaction with pathway models. At the same time, representations of biopathways should express how interactions take place. In spite of the fact that diverse databases provide users with pathways, their information and representation are frequently different from each other and show restricted interactions because of their static visualization. An adopted solution is to merge diverse representations to obtain a richer one. However, due to different formats and the multiple links involved in the pathway representations, the merge results frequently in erroneous models and in a tangle web of relations very hard to be manipulated. Instead, this work introduces a concurrent dynamic visualization (CDV) of the same pathway, which is retrieved from different sites and then transformed into Petri net representations to facilitate the understanding of their biological processes by interacting with them. We applied this approach to the analysis of the Notch signaling pathway, associated with cervical cancer; we obtained it from different sources which we compared and manipulated simultaneously by interacting with the provided CDV until the user generated a personalized pathway.

Keywords: Petri nets, dynamic visualization, signaling pathways, pathway databases.

 

Resumen

En biología de sistemas la visualización dinámica y las representaciones expresivas son necesarias para representar interacciones múltiples que ocurren durante los procesos biológicos en bioredes. La visualización dinámica facilita a los usuarios interactuar con modelos de bioredes, mientras que las representaciones deben expresar como se llevan a cabo las interacciones dentro de éstas. A pesar de que diversas bases de datos proveen de redes a los usuarios, generalmente la información y representación contenidas en cada una son diferentes, y la interacción usuario-biored es restringida debido a la visualización estática. Una solución que se ha adoptado es hacer converger varias representaciones para obtener una más completa. Sin embargo, debido al uso de diferentes formatos incompatibles entre ellos y a las múltiples conexiones involucradas en las redes, la integración frecuentemente resulta en modelos erróneos y en una maraña de conexiones representadas en la red que son muy difíciles de analizar y manipular. En este trabajo introducimos la visualización dinámica concurrente (VDC) de una misma vía, la cual es recuperada de diferentes bases de datos y transformada a representaciones en redes de Petri para facilitar el entendimiento de los procesos biológicos y modificar las vías obtenidas interactuando con ellas. Hemos aplicado esta estrategia al análisis de la vía de señalización de Notch, asociada a cáncer cérvicouterino, obteniéndola de tres diferentes fuentes, comparándolas y manipulándolas simultáneamente interactuando con la VDC provista, hasta la generación de una vía personalizada.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Likić V.A., McConville M.J., Lithgow T. & Bacic A., Systems Biology: The Next Frontier for Bioinformatics, Advances in Bioinformatics, Vol. 2010, November 2010.         [ Links ]

[2] Hornberg J. J., Bruggeman F.J., Westerhoff H., & Lankelma J., Cancer: A Systems Biology disease, BioSystems, Vol. 83, No. 2-3, February/March, 2006, pp.81-90.         [ Links ]

[3] Wong, D.J. et al., Revealing targeted therapy for human cancer by gene module maps, Cancer Res., Vol. 68, No. 2, January, 2008, pp. 369-378.         [ Links ]

[4] Pawson, T. et al., Oncogenic re-wiring of cellular signaling pathways, Oncogene, Vol. 26, No.9, February, 2007, pp.1268-1275.         [ Links ]

[5] Itadani, H. et al., Can systems biology understand pathway activation? Gene expression signatures as surrogate markers for understanding the complexity of pathway activation, Curr. Genomics, Vol. 9, No. 5, August, 2008, pp. 349-360.         [ Links ]

[6] OoiH. S., Schneider G., Lim T.T., Chan Y.L., Eisenhaber B. & Eisenhaber F., Biomolecular pathway databases, Methods Mol Biol, Vol 609, No. 1, 2010, pp. 129-144.         [ Links ]

[7] Huang, Y.J. et al., Targeting the human cancer pathway protein interaction network by structural genomics. Mol. Cell. Proteomics, Vol. 10, No. 8, October, 2008, pp. 2048-2060.         [ Links ]

[8] Suderman M. & Hallett M., Tools for visually exploring biological networks. Bioinformatics, Vol. 23, No. 20, October, 2007, pp.2651-2659.         [ Links ]

[9] Sonnenschein C, Soto AM. Why Systems Biology and Cancer? Semin Cancer Biol.Semin Cancer Biol, Vol. 21, No. 3, June, 2011, pp.147- 149.         [ Links ]

[10] Frolkis A. et. al. SMPDB: The Small Molecule Pathway Database. Nucleic Acids Res, Vol. 38 (Database issue), November, 2010, D480-D487.         [ Links ]

[11] Vastrik I., D'Eustachio P., Schemidt E., et al., Reactome: a knowledge base of biologic pathways and processes, Genome Biol, Vol. 8, No. 3,March, 2007, R39.         [ Links ]

[12] Karp P.D., Ouzounis C.A., Moore C., et al., 'Expansion of the BioCyc collection of pathway/genome databases to 160 genomes', Nucleic Acids Res, ,Vol. 33, No. 19, March, 2007, pp. 6083-6089.         [ Links ]

[13] Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: the Pathway Interaction Database. Nucleic Acids Res, Vol. 37(Database issue), October, 2008, D674-D679.         [ Links ]

[14] Le Nove're N., Borstein B., Broicher A., et al.: BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems, Nucleic Acids Res, Vol. 34 (Database issue), January, 2006, D689-D691.         [ Links ]

[15] Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C. WikiPathways: pathway editing for the people. PLoS Biol,Vol. 6, No. 7, July, 2008, xe184.         [ Links ]

[16] Ogata H., Goto S., Sato K., et al., KEGG: Kyoto Encyclopedia of genes and genomes, Nucleic Acids Res, Vol. 27, No. 1, January, 1999, pp. 29-34. Database is accessible at: http://www.genome.jp/kegg/        [ Links ]

[17] Bader GD, Cary MP, Sander C. Pathguide: a pathway resource list, Nucleic Acids Res, Vol. 1, No.34 (Database issue), January, 2006, D504-D506.         [ Links ]

[18] Krallinger M, Valencia A, Hirschman L. Linking genes to literature: text mining, information extraction, and retrieval applications for biology, Genome Biol,Vol. 9, September, 2008, Suppl 2:S8.         [ Links ]

[19] Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D'Eustachio P, Schaefer C, Luciano J, et al., The BioPAX community standard for pathway data sharing, Nat Biotechnol, Vol. 28, No. 9, September, 2010, pp. 935-942.         [ Links ]

[20] Hucka M, Finney A, Sauro HM, et al., The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics. Vol. 19, No. 4, March, 2003, pp. 524-531.         [ Links ]

[21] Sauro HM, Bergmann FT., Standards and ontologies in computational systems biology, Essays Biochem., Vol. 45, 2008, pp. 211-222.         [ Links ]

[22] Edelman L.B., Eddy J.A. & Price N.D. In silico models of cancer, Wiley Interdiscip Rev SystBiol Med, Vol. 2, No. 4, pp. July/August, 2010 pp. 4384-59.         [ Links ]

[23] Ruebenacker O, Moraru II, Schaff JC, Blinov ML. Integrating BioPAX pathway knowledge with SBML models, IET SystBiol., Vol. 3, No. 5, September, 2009, pp. 317-328.         [ Links ]

[24] Schulz M, Uhlendorf J, Klipp E, Liebermeister W. SBMLmerge, a system for combining biochemical network models, Genome Inform., Vol. 17, No. 1, 2006, pp. 62-71.         [ Links ]

[25] Webb RL, Ma'ayan A. Sig2BioPAX: Java tool for converting flat files to BioPAX Level 3 format. Source Code BiolMed.,March, 2011, doi: 10.1186/1751-0473-6-5.         [ Links ]

[26] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T.,Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., Vol.13, No. 11, November, 2003, pp. 2498-2504.         [ Links ]

[27] Zinovyev A, Viara E, Calzone L, Barillot E.,BiNoM: a Cytoscapeplugin for manipulating and analyzing biological networks, Bioinformatics, Vol. 24, No. 6, November, 2007, pp. 876-877.         [ Links ]

[28] Zhang JD, Wiemann S. KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics, Vol. 25, No. 11, June, 2009, pp. 1470-1471.         [ Links ]

[29] Chen M, Hariharaputran S, Hofestädt R, Kormeier B and Spangardt S., Petri Net Models for the Semiautomatic Construction of Large Scale Biological Networks, Natural Computing, Vol. 10, No. 3, 2009, DOI 10.1007/s11047-009-9151-y.         [ Links ]

[30] Praneenararat T, Takagi T, Iwasaki W. Interactive, multiscale navigation of large and complicated biological networks, Bioinformatics, Vol. 27, No. 8, April, 2011, pp.1121-1127.         [ Links ]

[31] Petri C.A., Kommunikation mit Automaten, Ph.D. Thesis, Institut für instrumentelle Mathematik, Bonn, 1962.         [ Links ]

[32] Pinney JW, Westhead DR, McConkey GA., Petri Net representations in systems biology. Biochem Soc Trans., Vol. 31, No. 6, December, 2003, pp. 1513-1515.         [ Links ]

[33] Chaouiya C., Petri net modelling of biological networks, Brief Bioinform., Vol. 8, No. 4, July, 2007, pp. 210-219.         [ Links ]

[34] Nagasaki M, Saito A, Jeong E, Li C, Kojima K, Ikeda E, Miyano S., Cell illustrator 4.0: a computational platform for systems biology. Stud Health Technol Inform., Vol. 162, 2011, pp. 160-181.         [ Links ]

[35] Artavanis-Tsakonas S, Muskavitch MA., Notch: the past, the present, and the future. Curr Top Dev Biol., Vol. 92, September, 2010, pp. 1-29.         [ Links ]

[36] Allenspach EJ, Maillard I, Aster JC, Pear WS., Notch signaling in cancer, Cancer Biol Ther., Vol. 1, No. 5, September/October, 2002, pp. 466-476.         [ Links ]

[37] Stockhausen MT, Kristoffersen K, Poulsen HS., The functional role of Notch signaling in human gliomas, Neuro Oncol., Vol.12, No. 2, February, 2010, pp. 199-211.         [ Links ]

[38] Westhoff B., ColalucaI.N.,D'Ario G., Donzelli M., Tosoni D., Volorio S., Pelosi G., Spaggiari L., Mazzarol G., Viale G., Pece S., Di Fiore P.P., Alterations of the Notch pathway in lung cancer, Vol. 6, No. 52, December, 2009, pp. 22293-22298.         [ Links ]

[39] Cau E, Blader P., Notch activity in the nervous system: to switch or not switch?, Neural Dev., Vol. 2, No.4, October, 2009, pp. 36.         [ Links ]

[40] Bray SJ., Notch signalling: a simple pathway becomes complex, Nat Rev Mol Cell Biol., Vol. 7, No. 9, September, 2006, pp. 678-689.         [ Links ]

[41] Koch I., Reisig W., Schreiber F., Modeling in Systems Biology, The Petri Net Approach, 1stEd., Springer, 2011, pp.         [ Links ]

[42] zurHausen H., Papillomaviruses in human cancers, Proc Assoc Am Physicians, Vol. 111, No. 6, November/December, 1999, pp. 581-587.         [ Links ]

[43] Psyrri A, DiMaio D., Human papillomavirus in cervical and head-and-neck cancer, Nat Clin Pract Oncol., Vol. 5, No. 1, January, 2008, pp. 24-31.         [ Links ]

[44] Talora C, Cialfi S, Segatto O, Morrone S, Kim Choi J, Frati L, et al., Constitutively active Notch1 induces growth arrest of HPV-positive cervical cancer cells via separate signaling pathways, Exp Cell Res., Vol. 305, No. 2, May,2005, pp. 343-354.         [ Links ]

[45] Gray GE, Mann RS, Mitsiadis E, Henrique D, Carcangiu ML, Banks A, et al., Human ligands of the Notch receptor, Am J Pathol., Vol. 154, No. 3, March, 1999, pp. 785-794.         [ Links ]

[46] Yeasmin S, Nakayama K, Rahman MT, Rahman M, Ishikawa M, Iida K, Otsuki Y, Kobayashi H, Nakayama S, Miyazaki K., Expression of nuclear Notch3 in cervical squamous cell carcinomas and its association with adverse clinical outcomes, Gynecol Oncol., Vol. 117, No. 3, June, 2010, pp. 409-416.         [ Links ]

[47] Miele L, Golde T, Osborne B., Notch signaling in cancer, Curr Mol Med., Vol. 6, No. 8, December, 2006, pp. 905-918.         [ Links ]

[48] L L Chen, N Blumm, N A Christakis, A-L Barabási, and T S Deisboeck: Cancer metastasis networks and the prediction of progression patterns British Journal of Cancer (2009) 101, 749-758.         [ Links ]

[49] Albert-László Barabási & Zoltán N. Oltvai Network biology: understanding the cell's functional organization Nature Reviews Genetics 5, 101-113 (February 2004).         [ Links ]

[50] Charlotte Schubert. Systems immunology: Complexity captured Nature 473, 113-114 (2011).         [ Links ]

[51] S. V. Chiplunkar: The immune system and cancer. CURRENT SCIENCE, 81(5):542-48, 2001.         [ Links ]

[52] Kumar Selvarajoo, Masaru Tomita and Masa Tsuchiya: Can Complex Cellular processes be governed by simple linear rules? Journal of Bioinformatics and Computational Biology 7(1):243-268, 2009.         [ Links ]

Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. Kyoto Encyclopedia of Genes and Genomes (KEGG). Available from: http://www.genome.jp/kegg/pathway/hsa/hsa04630.html.         [ Links ]

Jak/Stat Pathway. Cell Signaling Technology. Available from: http://www.cellsignal.com/pathways/jak-stat.jsp.         [ Links ]

kgmlreader. Cytoscape plugin for importing KEGG pathway files (KGML). Available from: http://code.google.com/p/kgmlreader/.         [ Links ]

JSBML. The Systems Biology Markup Language. Available from: http://sbml.org/Software/JSBML.         [ Links ]

Dom4j. yxymedia. Available from: http://www.dom4j.org/.         [ Links ]

Paxtools. Java library designed for accessing and manipulating data in BioPAX format. Computational Biology Center at MSKCC. Available from: http://www.biopax.org/paxtools.php.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons