SciELO - Scientific Electronic Library Online

 
vol.10 número2Analysis of the Stabilization System of Mimbot BipedPerformance Analysis of 3G+ Cellular Technologies with Mobile Clients índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.10 no.2 Ciudad de México abr. 2012

 

Development of a High-Speed Digitizer to Time Resolve Nanosecond Fluorescence Pulses

 

E. Moreno-García*1, R. Galicia-Mejía2, D. Jiménez-Olarte3, J. M. de la Rosa-Vázquez4, S. Stolik-Isakina5

 

1,3 Laboratorio de Instrumentación Electrónica, ESFM-IPN, Edificio No.9, U.P. "Adolfo López Mateos", 07630 México D.F., Tel. 5729 6000 ext. 55007 *emoreno@esfm.ipn.mx.

2,4,5 Laboratorio de Láseres. SEPI-ESIME, IPN, Edificio No.5, U.P. "Adolfo López Mateos", 07630 México D.F., Tel. 5729 6000 ext. 54622.

 

Abstract

The development of a high-speed digitizer system to measure time-domain voltage pulses in nanoseconds range is presented in this work. The digitizer design includes a high performance digital signal processor, a high-bandwidth analog-to-digital converter of flash-type, a set of delay lines, and a computer to achieve the time-domain measurements. A program running on the processor applies a time-equivalent sampling technique to acquire the input pulse. The processor communicates with the computer via a serial port RS-232 to receive commands and to transmit data. A control program written in LabVIEW 7.1 starts an acquisition routine in the processor. The program reads data from processor point by point in each occurrence of the signal, and plots each point to recover the time-resolved input pulse after n occurrences. The developed prototype is applied to measure fluorescence pulses from a homemade spectrometer. For this application, the LabVlEW program was improved to control the spectrometer, and to register and plot time-resolved fluorescence pulses produced by a substance. The developed digitizer has 750 MHz of analog input bandwidth, and it is able to resolve 2 ns rise-time pulses with 150 ps of resolution and a temporal error of 2.6 percent.

Keywords: nanosecond pulses, digitizer, time-equivalent sampling, time-resolved fluorescence.

 

Resumen

En este trabajo se presenta el desarrollo de un sistema digitalizador de alta velocidad para medir en el dominio del tiempo pulsos de voltaje del orden de nanosegundos. El diseño del digitalizador incluye un procesador digital de señales de alto rendimiento, un convertidor analógico digital tipo flash con ancho de banda grande, un conjunto de líneas de retardo, y una computadora para realizar las mediciones en el dominio del tiempo. El procesador ejecuta un programa que aplica una técnica de muestreo en tiempo equivalente para adquirir el pulso de entrada. El procesador se comunica con la computadora vía un puerto serie RS-232 para recibir comandos y transmitir datos. Se desarrolló un programa de control en LabVIEW 7 para iniciar una rutina de adquisición en el procesador. El programa lee datos del procesador punto por punto en cada ocurrencia de la señal, y grafica cada punto para recuperar el pulso de entrada resuelto en tiempo después de n ocurrencias. El prototipo desarrollado se aplica para medir pulsos de fluorescencia provenientes de un espectrómetro. Para esta aplicación se amplió el programa en LabVIEW para controlar el espectrómetro, y para registrar y graficar pulsos de florescencia resuelta en tiempo producidos por una substancia. El digitalizador desarrollado tiene un ancho de banda de 750 MHz en su entrada analógica, y es capaz de resolver pulsos con tiempo de subida de 2 ns con una resolución de 150 ps y un error temporal de 2.6 percent.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Lakowicz Joseph R., "Principles of Fluorescence Spectroscopy", Springer Science Business Media, New York, 3rd Edition, 2006.         [ Links ]

[2] Gore Michael G., "Spectrophotometry and Spectrofluorimetry", Oxford University Press, 2nd Edition UK, 2000.         [ Links ]

[3] C. Eichhorn, S. Fritzsche, S. Lôhle, A. Knapp, and M. Auweter-Kurtz, Time-resolved fluorescence spectroscopy of two-photon laser-excited 8p, 9p, 5f and 6f levels in neutral xenon, Phys. Rev. E. Stat Nonlin. Soft. Matter Phys. Vol. 80 (2Pt 2) Aug. 2009.         [ Links ]

[4] S. Lehmann, G. Geipel, G. Grambole, and G. Bernhard, A novel time-resolved laser fluorescence spectroscopy system for research on complexation of uranium (IV), Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 73, 9, September 2009, 902-908.         [ Links ]

[5] N. Saitoh and S. Takeuchi, Fluorescence imaging of petroleum accelerants by time resolved spectroscopy with a pulsed Nd-Yag laser, Foresenic Science International, Vol. 163, 1-2, Nov. 2006, 38-50.         [ Links ]

[6] Paras N. Prasad, "introduction to Biophotonics", Jhon Wiley & Sons, Inc., 2003.         [ Links ]

[7] Q. Fang, T. Papaioannou, J. A. Jo, R. Vaita, and K Shastry, Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics, Review of Scientific Instruments, Vol 75, 1, January 2004, 152-162.         [ Links ]

[8] P. V. Butte, A. N. Mamelak, M. Nuno, S. I. Bannykh, K. L. Black, and L. Marcu, Fluorescence lifetime spectroscopy for guided therapy of brain tumors, Neuroimage , Vol. 54, 2011, S125-S135.         [ Links ]

[9] J. D. Meier, H. Xie, Y. Sun, Y. Sun, N. Hatami, B. Poirier, L. Marcu, and D. G. Farwell, Time resolved laser-induced fluorescence spectroscopy as a diagnostic instrument in head and neck carcinoma, Otolaryngology-Head and Neck surgery, Vol. 142, 6, June 2010, 838-844.         [ Links ]

[10] Suzanne J. Lassiter, Wieslaw J. Stryjewski, Yun Wang, and Steven A. Soper, Fluorescence Lifetime Methods, 14 Spectroscopy 17 (6) June 2002, www.spectroscopyonline.com.         [ Links ]

[11] E. Moreno-García, R. Rosas-Vélez, P. Reyes-López, J. de la Rosa-Vázquez, Development of a spectrometer controlled by a PC, Científica, Vol 11, No 3, Julio-Sept 2007, 149-154.         [ Links ]

[12] R. Lawton, S. Riad, J. Andrews, Pulse & Time- Domain Measurements,. Proc. IEEE, vol.74, Jan. 1986. 77-81.         [ Links ]

[13] N.S. Nahman, Picosecond-Domain Waveform Measurements, Proceedings of IEEE, Vol. 66, No.4, April 1978, 441-454.         [ Links ]

[14]. Wilmshurst, T.H., "Signal Recovery from Noise in Electronic Instrumentation", 2nd Edition, Institute of Physics Publishing, Bristol, Great Britain, 1990.         [ Links ]

[15] T. L. Campos and F. E. Lytle, Fluorometric Data Processing Strategies Using Nanosecond Waveform Digitizers, Applied Spectroscopy, Volume 46, Number 12, 1992, 1859-1865.         [ Links ]

[16] J. M. Muretta, A. Kyrychenko, A. S. Ladokhin, D. J. Kast, G. D. Gillispie, and D. D. Thomas, A High-performance time-resolved fluorescence by direct waveform recording, Rev. Sci. Instrum. 81, 2010, 103101-1- 103101-8.         [ Links ]

[17] Jonathan D. Pitts and Mary-Ann Mycek, Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution, Rev Sci. Instrum., Vol 72, No 7, July 2001, 3061-3072.         [ Links ]

[18] T. Glanzmann, J-P Ballini, H. van den Bergh, and G. Wagnièresa, Time-resolved spectrofluorometer for clinical tissue characterization during endoscopy, Rev. Sci. Instrum., Vol. 70, No. 10, October 1999, 4067-4077.         [ Links ]

[19] M. Terziċ, B.P. Marinkociċ, D, Serviċ, J, Jureta, and A.R. Milosavijeviċ, Development of time-resolved laser-induced fluorescence spectroscopic technique for analysis of biomolecules, Facta Universitatis, Physics, Chemistry and Technology,Vol6, No. 1, 2008, 105-117.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons