SciELO - Scientific Electronic Library Online

 
vol.9 número3Z Transformation by Pascal Matrix and its Applications in the Design of IIR FiltersElectronic Implementation of a Fuzzy Neuron Model With a Gupta Integrator índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.9 no.3 Ciudad de México dic. 2011

 

Acoustic Emission Technique, an Overview as a Characterization Tool in Materials Science

 

C. R. Ríos–Soberanis

 

Centro de Investigación Científica de Yucatán Calle 43 No. 130 C.P. 97200 Mérida, Yucatán, Mexico. E–mail: rolando@cicy.mx

 

ABSTRACT

In order to predict the mechanical behavior of a composite during its service life, it is important to evaluate its mechanical response under different types of external stresses by studying the initiation and development of cracks and the effects induced by damage and degradation. The onset of damage is related to the structural integrity of the component and its fatigue life. For this, among other reasons, non–destructive techniques such as acoustic emission (AE) have been widely used nowadays for composite materials characterization. This method has demonstrated excellent results on detecting and identifying initiations sites, cracking propagation and fracture mechanisms of polymer matrix composite and ceramic materials. This paper focuses on commenting the importance of the acoustic emission technique as a unique tool for characterizing mechanical parameters in response to external stresses and degradation processes by reviewing previous investigations carried out by the author as participant. Acoustic emission was employed to monitor the micro–failure mechanisms in composites in relation to the stress level in real–time during the tests carried out. Some results obtained from different analysis are discussed to support the significance of using AE, technique that will be increasingly employed in the composite materials field due to its several alternatives for understanding the mechanical behavior; therefore, the objective of this manuscript is to involve the benefits and advantages of AE in the characterization of materials.

Keywords: Polymer matrix, mechanical properties, cermets, acoustic emission.

 

RESUMEN

Para lograr una predicción de las propiedades mecánicas de un material compuesto durante su vida en servicio, es importante evaluar su respuesta mecánica bajo diversos tipos de esfuerzos externos estudiando la iniciación y desarrollo de grietas así como los efectos inducidos por el daño y la degradación. El inicio del daño está relacionado con la integridad estructural del componente y su vida en fatiga. Por esta razón, entre otras, técnicas no destructivas tales como la emisión acústica (EA) han sido ampliamente empleadas en la caracterización de materiales. Este método ha demostrado excelentes resultados en la detección y determinación de los sitios de iniciación, propagación de grietas y mecanismos de fractura en compuestos de matriz polimérica y cerámica. Este artículo se enfoca en remarcar la importancia de la técnica EA como una herramienta única para la caracterización de los parámetros mecánicos en respuesta a esfuerzos externos y el proceso de degradación. La emisión acústica fue empleada para monitorear los mecanismos de micro–falla en compositos en relación al nivel de esfuerzo en tiempo real durante la prueba llevada a cabo. Resultados obtenidos de diferentes análisis son discutidos para apoyar la importancia de utilizar EA., técnica que será empleada en mayor demanda en el campo de los materiales compuestos debido a sus diversas alternativas para comprender el comportamiento mecánico; por lo tanto, el objetivo de este escrito es involucrar los beneficios y ventajas de la técnica EA en la caracterización de materiales.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Giordano M, Calabro A, Esposito C, D'Amore A and Nicolais L, An Acoustic–Emission Characterization of the Failure Modes in Polymer–Composite Materials, Composites Science and Technology, Vol 58, 1998, pp. 1923–1928.         [ Links ]

[2] Bohse J, Acoustic Emission Characteristics of Micro–Failure Processes in Polymer Blends and Composites, Composites Science and Technology, Vol 60, 2000, pp. 1213–1226.         [ Links ]

[3] Lieu YK, Shih WK and Jang BZ, Controlled Energy Dissipation in Fibrous Composites. II: Microscopic Failure Mechanisms, Polymer Composites, Vol 12, 1991, pp. 57–65 .         [ Links ]

[4] Bolognini S, Mari D, Viatte T and Benoit W, Fracture Toughness of Coated TiCN–WC–Co Cermets with Graded Composition. International Journal of Refracttory Metals and Hard Materials, Vol 19, No.4, 2001, pp. 285–292.         [ Links ]

[5] Yan Q, Huang Z, Wang GY and Jiang D, The Effect of Microstructure on Toughness of Ni/Al2O3 Composites Prepared by Spark Plasma Sintering, Journal of Alloys and Compounds, Vol 461, 2008, pp. 436–439.         [ Links ]

[6] Surgeon M, Vanswijgenhoven E, Wevers M and Van Oer Biest O, Acoustic Emission During Tensile Testing of Sic–Fibre–Reinforced BMAS Glass–Ceramic Composites, Composites Part A, Vol 28, 1997, pp. 473–480.         [ Links ]

[7] De Rosa IM, Santulli C and Sarasini F, Acoustic Emission for Monitoring the Mechanical Behavior of Natural Fibre Composites: A Literature Review, Composites: Part A, Vol 40, 2009, pp. 1456–1469.         [ Links ]

[8] Zhuang X and Yan X, Investigation of Damage Mechanisms in Self–Reinforced Polyethylene Composites by Acoustic Emission, Composites Science and Technology, Vol 66, 2006, pp. 444–449.         [ Links ]

[9] Ramakrishna S, and Hull D, Tensile Behaviour of Knitied Carbon–Fibre–Fabric/Epoxy Laminates–Part 1: Experimental, Journal of Composites Science and Technology, Vol 50, 1994, pp. 237–247.         [ Links ]

[10] Leong KH, S. Ramakrishna and Hamada H, The Potential of Knitting for Engineering Composites, 5th Japan SAMPE Symposium. 1997, Tokyo, Japan.         [ Links ]

[11] Sodomka L, Application of Acoustical Emission as a New Effective Diagnostic Tool in the Textile Fields, European Working Group Acoustic Emission, (EWGAE 26th). 2004, pp. 783–790, Berlin, Germany, September.         [ Links ]

[12] Hamsad, M.A. A Review: Acoustic Emission, a Tool for Composite–Materials Studies, Experimental Mechanics, 1985, pp. 7–13.         [ Links ]

[13] Andreikiv, O. E., Skal's'kyi, V. R. and Serhienko, O. M. Acoustic–Emission Criteria for Rapid Analysis of Internal Defects in Composite Materials. Materials Science, Vol. 37, No. 1, 2001, pp. 106–117.         [ Links ]

[14] De Rosa, I.M., Santulli, C. and Sarasini, F. Acoustic emission for monitoring the mechanical behavior of natural fibre composites: A literature review. Composites: Part A, 40, 2009, pp.1456–1469.         [ Links ]

[15] Soles, C.L., Chang, F.T., Gidley, D.W. and Yee, A.F. Contributions of the Nanovoid Structure to the Kinetics of Moisture Transport in Epoxy Resins. Journal of Polymer Science: Part B: Polymer Physics, Vol 38, 2000, pp.776-791.         [ Links ]

[16] Andreopoulos, A.G. and Tarantili, P.A. Water Sorption Characteristics of Epoxy Resin–UHMPE Fibers Composites. Journal of Applied Polymer Sciense, Vol. 70, 1998, pp.747–755,         [ Links ]

[17] Soles, C.L., Chang, F.T., Bolan, B.A., Hristov, H.A., Gidley, D.W. and Yee, A.F. Contributions of the Nanovoid Structure to the Moisture Absorption Properties of Epoxy Resins, Journal of Polymer Science: Part B: Polymer Physics, Vol 36, 1998, pp.3035–3048.         [ Links ]

[18] Surgeon, M., Vanswijgenhoven, E., Wevers, M. and Van Oer Biest, O. Acoustic Emission During Tensile Testing of Sic–fibre–Reinforced BMAS Glass–Ceramic Composites. Composites Part A 28A, 1997, pp.473–480.         [ Links ]

[19] Wakayama, S. and Ishiwata, K. Fracture Analysis Based on Quantitative Evaluation of Microcracking in Ceramics Using AE Source Characterization, Journal of Solid Mechanics and Materials Engineering, Vol. 3, No. 2, 2009, pp.96–105.         [ Links ]

[20] Bohlen, J., Dobron, P., Meza–Garcia, E., Chmelík, F., Lukác, P., Letzig, D. and Kainer, K.U. The Effect of Grain Size on the Deformation Behaviour of Magnesium Alloys Investigated by the Acoustic Emission Technique. Advanced Engineering Materials, Volume 8, Issue 5, 2006, pp. 422–427.         [ Links ]

[21] Ray, , A.K., Das, G., Mukhopadhyay, N.K., Bhattacharya, D.K., Dwarakadasa, E.S. and Parida, N. Studies on Indentation Fracture Toughness on Ceramic and Ceramic Composite Using Acoustic Emission Technique, Bulletin of Materials Science Volume 22, Number 1, 1999, pp.25–32.         [ Links ]

[22] Yamada, K. and Wakayama, S., AE Monitoring of Microdamage During Flexural Fracture of Cermets, EURO PM 2009, 2009, Copenhagen, Denmark, October.         [ Links ]

[23] Oskouei, A. R., Ahmadi, M. and Hajikhani, M. Wavelet–Based Acoustic Emission Characterization of Damage Mechanism in Composite Materials Under Mode I Delamination at Different Interfaces. eXPRESS Polymer Letters Vol.3, No.12, 2009, pp.804–813        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons