SciELO - Scientific Electronic Library Online

 
vol.9 número3A New Variable Step-Size NLMS Algorithm and its Performance Evaluation in Echo Cancelling ApplicationsAchieving Identity-Based Cryptography in a Personal Digital Assistant Device índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.9 no.3 Ciudad de México dic. 2011

 

Electrophoretic deposition of a bioactive Si, Ca–rich glass coating on 316L stainless steel for biomedical applications

 

H. H. Rodríguez*1, A. Maldonado–Reyes2, D. A. Cortés–Hernández3

 

1 Universidad Politécnica de Guanajuato Av. Universidad Norte S/N, S/colonia, 38486 Juan Alonso Cortázar, Guanajuato, Mexico

2 Instituto Tecnológico de Cd. Victoria Apartado Postal 175, 87010, Cd. Victoria, Tamaulipas, Mexico

3 Cinvestav–Unidad Saltillo, Carr. Saltillo–Mty, Km 13, Apdo. Postal 663, 25000 Saltillo, Coahuila, Mexico.

 

ABSTRACT

This work consisted in the development and characterization of a vitroceramic coating on 316L stainless steel by means of electrophoretic deposition (EPD). This vitroceramic coating was obtained through a Si–, Ca–rich glass coating crystallization. The electrophoretic deposition tests were performed on 316L stainless steel mechanically polished substrates. The results suggest that the electrophoretic coatings adhered well to the metallic surfaces. The results demonstrate that the crystallized coatings are potentially bioactive, because a dense and homogeneous apatite layer, similar to a bone, makes up.

Keywords: vitroceramics, electrophoretic deposition, biomaterials, apatite.

 

RESUMEN

Este trabajo consistió en el desarrollo y caracterización de un recubrimiento vitro–cerámico sobre acero inoxidable 316L, obtenido por medio de un proceso de deposición electroforética. El recubrimiento vitro–cerámico fue obtenido al cristalizar una capa de vidrio rica en calcio y silicio. Las pruebas de deposición electroforética fueron realizadas sobre sustratos de acero inoxidable 316L, pulidos mecánicamente. Los resultados sugieren que los recubrimientos electroforéticos fueron muy bien adheridos a la superficie metálica. Los resultados demuestran que los recubrimientos cristalizados son potencialmente bio–activos, debido a la formación de una capa densa y homogénea de apatita similar al hueso.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Porter J. R., Ruckh T. T., and Popat K. C., Bone Tissue Engineering: A Review in Bone Biomimetics and Drug Delivery Strategies, Biotechnol. Prog., (2009), 25, No. 6, 1531–1560        [ Links ]

[2] Anderson J. M., Biological responses to materials, Annu. Rev. Mater. Res. (2001), 31, 81–110.         [ Links ]

[3] Kumar R., Cheang P., Khor K. A. Radio frequency (RF) suspension plasma sprayed ultra–fine hydroxyapatite (HA)/zirconia composite powders. Biomaterials. (2003), 24, 2611–2621.         [ Links ]

[4] Rodriguez H.H., Vargas G., Cortes D.A., Electrophoretic deposition of bioactive wollastonite and porcelain–wollastonite coatings on 316L stainless steel, Ceramics International, (2008), 34, 1303–1307.         [ Links ]

[5] Ferrari B., Moreno R., Conformado de materiales cerámicos por electroforesis en medios acuosos, Boletín de la Sociedad Española de Cerámica y Vidrio (1998), 38, 5, 369–381.         [ Links ]

[6] Zhitomirsky I., Gal–Or L., Electrophoretic deposition of hydroxyapatite, J. Mater. Sci. Med. (1997), 8, 213–219.         [ Links ]

[7] Rodríguez H. H., Vargas G., Cortes D.A., Electrophoretic deposition of wollastonite on 316L stainless steel from different dispersing media, Key Eng. Mater. (2006), 304, 231–236.         [ Links ]

[8] Haidukewych G.J., Springer B.D., Jacofsky D.J., Berry D.J., Total knee arthroplasty for salvage of failed internal fixation or nonunion of the distal femur. J Arthroplasty. (2005), 20, 344–349.         [ Links ]

[9] Kokubo T., Kushitani H., Sakka S., Kitsugi T., Yamamuro T., Solutions able to reproduce in vitro surface–structure changes in bioactive glass–ceramic AW, J. Biomed. Res. (1990), 24, 721–734.         [ Links ]

[10] Hench L., Wilson J., An introduction to bioceramics, World Sci. (1999), 1, 75.         [ Links ]

[11] Bertoni E., Bigi A., Cojazzi G., Gandolfi M., Panzavolta S., Roveri N., Nanocrystals of magnesium and fluoride substituted hydroxyapatite, J. Inorg. Biochem. (1998), 72, 29–35.         [ Links ]

[12] Uchida M., Kim H.M., Kokubo T., Nawa M., Asano T., Tanaka K., Nakamura T., Apatite–forming ability of a zirconium/alumina nano–composite induced by chemical treatment, J. Biomed. Mater. Res. (2002), 60, 277.         [ Links ]

[13] Jallot E., Role of magnesium during spontaneous formation of calcium phosphate layer at the periphery of a bioactive glass coating doped with MgO, Appl. Surf. Sci. (2003), 211, 89–95.         [ Links ]

[14] Kokubo T., Ito S., Huang Z., Hayashi T., Sakka S., Kitsugi T., Yamamuro T., Ca, P–rich layer formed on high–strength bioactive glass–ceramic A–W, J. Biomed. Mater. Res. (1990), 24, 331–343.         [ Links ]

[15] Liu, X. Ding X., Morphology of apatite formed on surface of wollastonite coating soaked in simulate body fluid, Mater. Lett. (2002), 57, 652–655.         [ Links ]

[16] Zheng X., Shi J., Liu X., C. Ding, Developments of plasma–sprayed biomedical coatings, J. Ceram. Process. Res. (2001), 2, 4, 174–179.         [ Links ]

[17] Kokubo T., Miyaki F., Nakamura T., Spontaneous formation on bonelike apatite layer on chemically treated titanium metals, J. Am. Ceram. Soc. (1996), 79, 1127.         [ Links ]

[18] Thamaraiselvi T.V., Rajeswari S., Biological evaluation of bioceramic materials a review, Trends Biomater. Artif. Organs (2004), 18, 1, 9–17.         [ Links ]

[19] De Aza P.N., Luklinska Z.B., Anseau M., Bioactivity of wollastonite ceramics, in vitro evaluations, Scr. Mater. (1994), 31, 8, 1001–1005.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons