SciELO - Scientific Electronic Library Online

 
vol.9 número2Numerical and Experimental Analysis in the Manipulation of the Mechanical Properties for Enhancing the Mechanical Resistance of a MaterialNetwork Coding Based Security for Routing Attacks in WRN: Frechet Interference and Rayleigh Outage Evaluation índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Journal of applied research and technology

versão On-line ISSN 2448-6736versão impressa ISSN 1665-6423

J. appl. res. technol vol.9 no.2 Ciudad de México Ago. 2011

 

Dynamic Response of Femoral Cartilage in Knees With Unicompartmental Osteoarthritis

 

A. Vidal–Lesso*1, E. Ledesma–Orozco2, R. Lesso–Arroyo3, R. Rodríguez–Castro4

 

1,2 Department of Mechanical Engineering. Universidad de Guanajuato, Campus Irapuato–Salamanca. Salamanca–Valle de Santiago Highway, Km 3.5+1.8. Salamanca, Guanajuato, Mexico. *E–mail: avidal@itc.mx

3,4 Department of Mechatronic Engineering. Instituto Tecnológico de Celaya. Tecnologico Avenue and Antonio Garcia Cubas Street, 38010, Celaya, Gto, Mexico.

 

ABSTRACT

The objective of the present work was to determine the dynamic indentation response, stiffness and relaxation curves for the shear and the bulk modulus of femoral knee cartilage with no visual damage in cases under unicompartmental osteoarthritis.

A cyclic displacement of 0.5 mm in axial direction was applied with a 3 mm plane–ended cylindrical indenter at specific points in the femoral knee cartilage specimens of seven patients with unicompartmental osteoarthritis (UOA). The indentation force over time was recorded and next the maximum stiffness in all cycles was obtained and compared. Also, the relaxation curves for the shear and the bulk modulus of cartilage were obtained in this work.

A decrease in the maximum indentation force was observed comparing between indentation cycles; it was of 6.75 ± 0.71% from cycle 1 to cycle 2 and 4.70 ± 0.31% for cycle 2 to cycle 3. Stiffness values changed with a mean of 3.35 ± 0.39% from cycle 1 to cycle 2 and 1.40 ± 0.71% from cycle 2 to cycle 3. Moreover, relaxation curves for the shear modulus and the bulk modulus showed the nonlinear behavior of articular cartilage with UOA.

Our results showed that cartilage specimens with no visual damage in UOA preserve a nonlinear viscoelastic behavior and its stiffness increases through the loading cycles. Our work provides experimental values for generating a more realistic cartilage behavior than those currently used in computer cartilage models for the study of UOA.

Keywords: Osteoarthritis, cartilage, dynamic response, biomechanics.

 

RESUMEN

El objetivo de este trabajo fue determinar la respuesta dinámica de indentación, la rigidez y las curvas de relajación para módulo cortante y volumétrico de cartílago femoral de rodilla con daño no visual en casos con osteoartritis unicompartmental.

Se aplicó un desplazamiento cíclico de 0.5 mm en dirección axial con un indentador cilíndrico plano de 3 mm en puntos específicos de los especímenes de cartílago femoral de rodilla de siete pacientes con osteoartritis unicompartimental (OAU). La fuerza de indentación a través del tiempo fue registrada, obteniéndose y comparándose la máxima rigidez en todos los ciclos. Además, en este trabajo se obtuvieron las curvas de relajación para el módulo cortante y volumétrico de cartílago.

Se observó una disminución en la fuerza de indentación máxima comparando entre los ciclos de indentación; ésta fue 6.75 ± 0.71% del ciclo 1 al 2, y 4.70 ± 0.31% del ciclo 2 al 3. Los valores de rigidez cambiaron 3.35 ± 0.39% entre el ciclo 1 y 2, y 1.40 ± 0.71% entre el ciclo 2 y 3. Además, las curvas de relajación para el módulo cortante y volumétrico mostraron el comportamiento no lineal del cartílago articular con OAU.

Los resultados mostraron que los especímenes de cartílago con daño no visual en OAU preservan un comportamiento viscoelástico no lineal y su rigidez se incrementa a través de los ciclos de carga. Este trabajo provee valores experimentales para generar un comportamiento de cartílago más real que el utilizado actualmente en modelos computacionales de cartílago para el estudio de OAU.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] Herberhold C., Faber S., Stammberger T., Steinlechner M., Putz R., Englmeier K. H., Reiser M., Eckstein F. In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. Journal of Biomechanics, Vol. 32, No. 12, December, 1999, pp. 1287–1295.         [ Links ]

[2] Hopkins A. R., New Andrew M., Rodriguez–y–Baena F., Taylor M. Finite element analysis of unicompartmental knee arthroplasty. Medical Engineering & Physics, Vol. 32, No. 1, January, 2010, pp. 14–21.         [ Links ]

[3] Huang C., Soltz M. A., Kopacz M., Mow V. C., Ateshian G. A. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension–compression nonlinearity in the biphasic response of cartilage. Journal of Biomechanical Engineering, Vol. 125, No. 1, February, 2003, pp. 84–93.         [ Links ]

[4] Obeid E. M. H., Adams M. A., Newman J. H., Mechanical properties of articular cartilage in knees with unicompartmental osteoarthritis, Journal of Bone and Joint Surgery, Vol. 76, No. 2, 1994, pp. 315–319.         [ Links ]

[5] Armstrong C. G., Mow V. C., Variations in the intrinsic mechanical properties of human articular cartilage with age, degeneration, and water content, Journal of Bone and Joint Surgery, Vol. 64, No. 1, January, 1982, pp. 88–94.         [ Links ]

[6] Jun–Kyo S., Zhengfang L., Savio L–Y. W., Dynamic behavior of a biphasic cartilage model under cyclic compressive loading, Journal of Biomechanics, Vol. 28, No. 4, April, 1995, pp. 357–364.         [ Links ]

[7] Suh J–K., Dynamic unconfined compression of articular cartilage under a cyclic compressive load, Biorheology, Vol. 33, No. 4, July/October, 1996, pp. 289–304.         [ Links ]

[8] Stolz M., Raiteri R., Daniels A. U., VanLandingham M. R., Baschong W., Aebi U., dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation–type atomic force microscopy, Biophysical Journal, Vol. 86, No. 5, May, 2004, pp. 3269–3283.         [ Links ]

[9] Eckstein F., Lemberger B., Stammberger T., Englmeier K. H., Reiser M., Patellar cartilage deformation in vivo after static versus dynamic loading, Journal of Biomechanics, Vol. 33, No. 7, July, 2000, pp. 819–825.         [ Links ]

[10] Davisson T., Kunig S., Chen A., Sah R., Ratcliffe A., Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage, Journal of Orthopaedic Research, Vol. 20, No. 4, July, 2002, pp. 842–848.         [ Links ]

[11] Bellucci G., Seedhom B. B., Mechanical behaviour of articular cartilage under tensile cyclic load, Rheumatology, Vol. 40, No. 12, December, 2001, pp. 1337–1345.         [ Links ]

[12] Thambyah A., Nather A., Goh J., Mechanical properties of articular cartilage covered by the meniscus, Osteoarthritis and Cartilage, Vol. 14, No. 6, June, 2006, pp. 580–588.         [ Links ]

[13] Trabelsia O., Pérez del Palomara A., López–Villalobos J. L., Ginel A., Doblaré M., Experimental characterization and constitutive modeling of the mechanical behavior of the human trachea, Medical Engineering & Physics, Vol. 32, No. 1, January, 2010, pp. 76–82.         [ Links ]

[14] Buckley M. R., Gleghorn J. P., Bonassar L. J., Cohen I., Mapping the depth dependence of shear properties in articular cartilage, Journal of Biomechanics, Vol. 41, No. 11, August, 2008, pp. 2430–2437.         [ Links ]

[15] Haut D. T. L., Hull M. L., Rashid M. M., Jacobs C. R., A finite element model of the human knee joint for the study of tibio–femoral contact, Journal of Biomechanical Engineering, Vol. 124, No. 3, June, 2002, pp. 273–280.         [ Links ]

[16] Wei H–W, Sun S–S, Jao S–HE, Yeh C–R, Cheng C–K, The influence of mechanical properties of subchondral plate, femur and neck on dynamic stress distribution of the articular cartilage, Medical Engineering & Physics, Vol. 27, No. 4, May, 2005, pp. 295–304.         [ Links ]

[17] Li G., Park S. E., DeFrate L. E., Schutzer M. E., Ji L., Gill T. J., Rubash H. E., The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage–to–cartilage contact, Clinical Biomechanics, Vol. 20, No. 7, August, 2005, pp. 736–744.         [ Links ]

[18] Bingham J. T., Papannagari R., Van de Velde S. K., Gross C., Gill T. J., Felson D. T., Rubash H. E., Li G., In vivo cartilage contact deformation in the healthy human tibiofemoral joint, Rheumatology, Vol. 47, No. 11, November, 2008, pp. 1622–1627.         [ Links ]

[19] Carballido–Gamio J., Bauer J. S., Stahl R., Lee K. Y., Krause S., Link T. M., Majumdar S., Inter–subject comparison of MRI knee cartilage thickness, Medical Image Analysis, Vol. 12, No. 2, April, 2008, pp. 120–135.         [ Links ]

[20] Mow V. C., Gibbs M. C., Lai W. M., Zhu W. B., Athanasiou K. A., Biphasic indentation of articular cartilage–II. A numerical algorithm and an experimental study, Journal of Biomechanics, Vol. 22, No. 8–9, 1989, pp. 853–861.         [ Links ]

[21] Mak A. F., Lai W. M., Mow V. C., Biphasic indentation of articular cartilage–I. Theoretical analysis, Journal of Biomechanics, Vol. 20, No. 7, 1987, pp. 703–714.         [ Links ]

[22] Loubet J. L., Lucas B. N., Oliver W. C., Some Measurements of viscoelastic properties with the help of nanoindentation, NIST Special publication 896: International Workshop on Instrumented Indentation, 1995, pp 31–34, San Diego, CA, USA, April.         [ Links ]

[23] Lyyra T., Kiviranta I., Vaatainen U., Helminen H. J., Jurvelin J. S., In vivo characterization of indentation stiffness of articular cartilage in the normal human knee, Journal of Biomedical Materials Research, Vol. 48, No. 4, 1999, pp. 482–487.         [ Links ]

[24] Hayes W. C., Keer L. M., Herrmann G., Mockros L. F., A mathematical analysis for indentation tests of articular cartilage, Journal of Biomechanics, Vol. 5, No. 5, September, 1972, pp. 541–551.         [ Links ]

[25] Garcia J. J., Altiero N. J., Haut R. C., An approach for the stress analysis of transversely isotropic biphasic cartilage under impact load, Journal of Biomechanical Engineering, Vol. 120, No. 5, October, 1998, pp. 608–613.         [ Links ]

[26] Park S., Hung C. T., Ateshian G. A., Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels, OsteoArthritis and Cartilage, Vol. 12, No. 1, January, 2004, pp. 65–73.         [ Links ]

[27] Park S., Nicoll S. B., Mauck R. L., Ateshian G. A., Cartilage mechanical response under dynamic compression at physiological stress levels following collagenase digestion, Annals of Biomedical Engineering, Vol. 36, No. 3, March, 2008, pp. 425–434.         [ Links ]

[28] Huang C. Y., Mow V. C., Ateshian G. A., The role of flow independent viscoelasticity in the biphasic tensile and compressive responses of articular cartilage, Journal of Biomechanical Engineering, Vol. 123, No. 5, October, 2001, pp. 410–417.         [ Links ]

[29] Lee R. C., Frank E. H., Grodzinsky A. J., Roylance D. K., Oscillatory compressional behavior of articular cartilage and its associated electromechanical properties, Journal of Biomechanical Engineering, Vol. 103, No. 4, November, 1981, pp. 280–292.         [ Links ]

[30] Soltz M. A., Ateshian G. A., Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage, Annals of Biomedical Engineering, Vol. 28, No. 2, February, 2000, pp. 150–159.         [ Links ]

[31] Park S., Hung C. T., Ateshian G. A., Mechanical response of bovine articular cartilage under dynamic unconfined compression loading at physiological stress levels, Osteoarthritis and Cartilage, Vol. 12, No. 1, January, 2004, pp. 65–73.         [ Links ]

[32] Barker M. K., Seedhom B. B., Articular cartilage deformation under physiological cyclic loading— Apparatus and measurement technique, Journal of Biomechanics, Vol. 30, No. 4, April, 1997, pp. 377–381.         [ Links ]

[33] Donzelli P. S., Spilker R. L., Ateshian G. A., Mow V. C., Contact analysis of biphasic transversely isotropic cartilage layers and correlations with tissue failure, Journal of Biomechanics, Vol. 32, No. 10, October, 1999, pp. 1037–1047.         [ Links ]

[34] Garcia J. J., Cortes D. H., A nonlinear biphasic viscohyperelastic model for articular cartilage, Journal of Biomechanics, Vol. 39, No. 16, 2006, pp. 2991–2998.         [ Links ]

[35] Li L. P., Herzog W., Korhonen R. K., Jurvelin J. S., The role of viscoelasticity of collagen fibers in articular cartilage: axial tension versus compression, Medical Engineering and Physics, Vol. 27, No. 1, January, 2005, pp. 51–57.         [ Links ]

[36] Ateshian G. A., Lai W. M., Zhu W. B., Mow V. C., An asymptotic solution for the contact of two biphasic cartilage layers, Journal of Biomechanics, Vol. 27, No. 11, November, 1994, pp. 1347–1360.         [ Links ]

[37] Li G., Park S. E., DeFrate L. E., Schutzer M. E., Ji L., Gill T. J., Rubash H. E., The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage–to–cartilage contact, Clinical Biomechanics, Vol. 20, No. 7, August, 2005, pp. 736–744.         [ Links ]

[38] Mow V. C., Kuei S. C., Lai W. M., Armstrong C. G., Biphasic creep and stress relaxation of articular cartilage in compression– Theory and experiments, J Biomech Eng, Vol. 102, No. 1, February, 1980, pp. 73–84.         [ Links ]

[39] Smith P. N., Refshauge K. M., Scarvell J. M., Development of the concepts of knee kinematics, Archives of Physical Medicine Rehabilitation, Vol. 84, No. 12, December, 2003, pp. 1895–1902.         [ Links ]

[40] Adam C., Eckstein F., Milz S., Putz R., The distribution of cartilage thickness within the joints of the lower limb of elderly individuals, Journal of Anatomy, Vol. 193, No. 2, August, 1998, pp. 203–214.         [ Links ]

[41] Yuehuei H. A., Kylie L. M., Handbook of Histology Methods for Bone and Cartilage, 1st Ed., Humana Press, 2003, pp. 411.         [ Links ]

[42] Mankin H. J., Dorfman H., Lippiello L., Zarins A. Biochemical and metabolic abnormalities in articular cartilage from osteoarthritis human hips. II. Correlation of morphology with biochemical and metabolic data, Journal of Bone and Joint Surgery, Vol. 53, No. 3, April, 1971, pp. 523–537.         [ Links ]

[43] Franz T., Hasler E. M., Hagg R., Weiler C., Jakob R. P., Mainil–Varlet P., In situ compressive stiffness, biochemical composition, and structural integrity of articular cartilage of the human knee joint, Osteoarthritis and Cartilage, Vol. 9, No. 6, August, 2001, pp. 582–592.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons