SciELO - Scientific Electronic Library Online

 
vol.9 número1Chaotic Systems Synchronization Via High Order Observer DesignA Comparison of Dynamic Naive Bayesian Classifiers and Hidden Markov Models for Gesture Recognition índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Journal of applied research and technology

versão impressa ISSN 1665-6423

J. appl. res. technol vol.9 no.1 México abr. 2011

 

Symbolic Analysis of OTRAs–Based Circuits

 

C. Sánchez–López*1,2, E. Martínez–Romero3, E. Tlelo–Cuautle3

 

1 Department of Electronics, UAT, Mexico, Czda Apizaquito s/n, Apizaco, Tlaxcala, 140. *E–mail: carlsanmx@yahoo.com.mx

2 IMSE–CNM, CSIC and University of Seville, Spain, Avda. Americo Vespucio s/n, Isla de la Cartuja, Sevilla, 41090.

3 Department of Electronics, INAOE, Mexico, Luis Enrique Erro No. 1 Tonantzintla, Puebla, 72840.

 

ABSTRACT

A new nullor–based model to describe the behavior of Operational Transresistance Amplifiers (OTRAs) is introduced. The new model is composed of four nullors and three grounded resistors. As a consequence, standard nodal analysis can be applied to compute fully–symbolic small–signal characteristics of OTRA–based analog circuits, and the nullor–based OTRAs model can be used in CAD tools. In this manner, the fully–symbolic transfer functions of several application circuits, such as filters and oscillators can easily be approximated.

Keywords: Operational Transresistance Amplifier, nullor, nodal analysis.

 

RESUMEN

En el presente trabajo se presenta un nuevo modelo basado en nullors para describir el comportamiento de amplificadores operacionales de transresistencia (OTRAs). El modelo se compone de cuatro nullors y tres resistores aterrizados; como resultado, se puede aplicar el análisis nodal estándar para calcular características de pequeña señal completamente simbólicas de circuitos analógicos basados en OTRAs; este nuevo modelo puede ser usado en herramientas CAD. De esta forma, las funciones de transferencia completamente simbólica de varios circuitos de aplicación tales como filtros y osciladores, pueden aproximarse fácilmente.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgment

This work has been supported by PROMEP–Mexico under the project number UATLX–PTC–088 and by Consejería de Innovación, Ciencia y Empresa, Junta de Andalucía–Spain, under the project number TIC–2532. The first author thanks the support from the JAE–Doc program of CSIC, co–funded by FSE.

 

References

[1] Brodie J.H. A Notch filter employing current differencing operational amplifier, Int. J. Electron, vol. 41, no. 5, pp. 501–508, 1976.         [ Links ]

[2] Agouridis D.C, Fox R.J. Transresistance instrumentation amplifier, Proc. IEEE, vol. 66, no. 10, pp. 1286 –1287, 1978.         [ Links ]

[3] National Semiconductors Corp., Designing with a new super fast dual norton amplifier. Linear Applications Data Book, 1981.         [ Links ]

[4] Abidi A. Gigahertz transresistance amplifiers in fine line NMOS, IEEE Journal Solid State Circuits, vol. 19, no. 6, pp. 986–994, 1984.         [ Links ]

[5] National Semiconductors Corp., The LM 3900: a new current differencing ± quad of the input amplifiers. Linear Applications Data Book, 1986.         [ Links ]

[6] Chen J, Tsao H, Chen C. Operational transresistance amplifier using CMOS technology. Electronics Letters, vol. 28, no. 22, pp. 2087–2088, 1992.         [ Links ]

[7] Salama K.N, Soliman A.M. CMOS operational transresistance amplifier for analog signal processing. Microelectronics Journal, vol. 30, no. 3, pp. 235–245, 1999.         [ Links ]

[8] Salama K.N, Soliman A.M. Active RC applications of the operational transresistance amplifier. Frequenz, vol. 54, no. 1, pp. 171–176, 2000.         [ Links ]

[9] Salama K.N, Soliman A.M. Novel oscillators using the operational transresistance amplifier. Microelectronics Journal, vol. 31, no. 1, pp. 39–47, 2000.         [ Links ]

[10] Barthelemy H. Koudobine I, Landeghem D. Bipolar Low–Power Operational Transresistance Amplifier Based on First Generation Current Conveyor, IEEE Trans. on Circuits and systems II: Analog and Digital Signal Processing, vol. 48, no. 6, pp. 620–625, 2001.         [ Links ]

[11] Chen J.J, Tsao H.W, Liu S.I. Voltage–mode MOSFET–C filters using operational transresistance amplifier (OTRA's) with reduced parasitic capacitance effect. IEE Proc. Circuits Devices Syst., vol. 148, no. 5, pp. 242–249, 2001.         [ Links ]

[12] Cam U, Kacar F, Cicekoglu O, Kuntman H, Kuntman A. Novel two OTRA–based grounded immitance simulator topologies. Analog Integrated Circuits and Signal Processing, vol. 39, no. 2, pp. 169–175, 2004.         [ Links ]

[13] Hou C.L, Chien H.C, Lo Y.K. Square wave generators employing OTRA's. IEE Proc., Circuits Devices Syst., vol. 152, no. 3, pp. 718–722, 2005.         [ Links ]

[14] Cakir C, Cam U, Cicekoglu O. Novel all–pass filter configuration employing single OTRA. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, no. 3, pp. 122–125, 2005.         [ Links ]

[15] Kilinc S, Cam U. Realization of n–th order voltage transfer function using a single operational transresistance amplifier. ETRI Journal, vol. 27, no. 5, pp. 647–650, 2005.         [ Links ]

[16] Lo Y.K, Chien H.C. Current–mode monostable multivibrators using OTRAs. IEEE Transactions on Circuits and Systems II, vol. 53, no. 11, pp. 1274–1278, 2006.         [ Links ]

[17] Hwang Y.S, Wu D.S, Chen J.J, Shih C.C, Chou W.S. Realization of high–order OTRA–Mosfet–C active filters. Circuits Systems Signal Processing, vol. 26, no. 4, pp. 281–291, 2007.         [ Links ]

[18] Lo Y.K, Chien H.C. Switch–controllable OTRA–based square/triangular waveform generator. IEEE Transactions on Circuits and Systems II, vol. 54, no. 12, pp. 1110–1114, 2007.         [ Links ]

[19] Lo Y.K, Chien H.C, Chiu H.J. Switch–controllable OTRA–based bistable multivibrators. IET Circuits Devices Systems, vol. 2, no. 4, pp. 373–382, 2008.         [ Links ]

[20] Mitra, S. K. Nullator–norator equivalent circuits of linear active elements and their applications. Proceedings of Asilomar Conference on Circuits and Systems, pp. 267–276, Pacific Grove USA, November 1–4, 1967.         [ Links ]

[21] Kumar P, Senani R. Bibliography on nullors and their applications in circuit analysis, synthesis and design. Analog Integrated Circuits and Signal Processing, vol. 33, no. 1, pp. 65–76, 2002.         [ Links ]

[22] Svoboda JA. Current conveyors, operational amplifiers and nullors. IEE Proceedings G Circuits, Devices & Systems, vol. 136, no. 6, pp. 317–322, 1989        [ Links ]

[23] Svoboda JA. Using nullors to analyse linear networks. International Journal of Circuit Theory and Applications, vol. 14, no. 3, pp. 169–180, 1986.         [ Links ]

[24] Svoboda JA. Unique solvability of RLC nullor networks. International Journal of Circuit Theory and Applications, vol. 11, no. 1, pp. 1–6, 1983.         [ Links ]

[25] Floberg H. Symbolic Analysis in Analog Integrated Circuit Design. Kluwer Academic Publishers, Boston, 1997.         [ Links ]

[26] Tlelo–Cuautle E, Sánchez–López C, Sandoval–Ibarra F. Computing symbolic expressions in analog circuits using nullors. Computación y Sistemas, vol. 9, no. 2, pp. 119–132, 2005.         [ Links ]

[27] Tlelo–Cuautle E, Sánchez–López C, Moro–Frías D. Symbolic analysis of (MO)(I)CCI(II)(III)–based analog circuits. International Journal of Circuit. Theory and Applications, vol. 38, no. 6 pp. 649–650, 2010.         [ Links ]

[28] Schmid H. Approximating the universal active element. IEEE Trans on Circuits and Systems II: Analog and Digital Signal Processing, vol. 47, no. 11, pp. 11601169, 2000.         [ Links ]

[29] Sánchez–López C, Tlelo–Cuautle E. Behavioral model generation for symbolic analysis of analog integrated circuits. IEEE ISSCS, pp. 327–330, Iasi, Romania, July 14–15, 2005.         [ Links ]

[30] Sánchez–López C, Tlelo–Cuautle E. Symbolic behavioral model generation of current–mode analog circuits. IEEE ISCAS, pp. 2761–2764, Taipei, Taiwan, May 24–27, 2009.         [ Links ]

[31] Sánchez–López C, Moro–Frías D, Tlelo–Cuautle E. Improving the formulation process of the system of equations of analog circuits, IEEE SM2ACD, pp. 102106, Erfurt, Germany, October 7–8, 2008.         [ Links ]

[32] Tlelo–Cuautle E, Sánchez–López C, Martinez–Romero E, S.X.–D. Tan Symbolic analysis of analog circuits containing voltage mirrors and current mirrors, Analog Integrated Circuits and Signal Processing, vol. 65, no. 1, pp 89–95, 2010.         [ Links ]

[33] Tan S. X.–D. Symbolic analysis of analog circuits by Boolean logic operators. IEEE Trans on Circuits and Systems II: Express Briefs, vol. 53, no. 11, pp. 13131317, 2006.         [ Links ]

[34] Tan S. X.–D, Guo W, Qi Z. Hierarchical approach to exact symbolic analysis of large analog circuits. IEEE Trans on Computer–Aided Design of Integrated Circuits and Systems, vol. 24, no. 8, pp. 1241–1250, 2005.         [ Links ]

[35] Doboli A, Vemuri R. A regularity–based hierarchical symbolic analysis method for large–scale analog networks. IEEE Trans. on Circuits and Systems II: Analog and Digital Signal Processing, vol. 48, no. 11, pp. 1054–1068, 2001.         [ Links ]

[36] Gielen G, Wambacq P, Sansen W. Symbolic analysis methods and applications for analog circuits: a tutorial overview. Proceedings of the IEEE, vol. 82, no. 2, pp. 287–304, 1994.         [ Links ]

[37] Wambacq P, Fernández F.V. Gielen G, Sansen W, Rodríguez–Vázquez A. Algorithm for efficient symbolic analysis of large analogue circuits. Electronics Letters, vol. 30, no. 14, pp. 1108–1109, 1994.         [ Links ]

[38] Chua LO, Lin PM. Computer–Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques. Prentice–Hall: Englewood Cliffs, NJ, 1975.         [ Links ]

[39] Gielen GE, Sansen W. Symbolic Analysis for Automated Design of Analog Integrated Circuits. Kluwer Academic Publishers, 1991.         [ Links ]

[40] Fernández F.V., Rodríguez–Vázquez A, Huertas JL, Gielen GE. Symbolic Analysis Techniques: Applications to Analog Design Automation. IEEE Press: NY, 1998.         [ Links ]

[41] Shi CJR, Tan XD. Canonical symbolic analysis of large analog circuits with determinant decision diagrams. IEEE Transactions on Computer–Aided Design of Integrated Circuits and Systems, vol. 19, no. 1, pp. 1–18, 2000.         [ Links ]

[42] Sánchez–López C, Fernández F.V, Tlelo–Cuautle E. Generalized Admittance Matrix Models of OTRAs and COAs. Microelectronics Journal, vol. 41, no. 8, pp. 502505, 2010.         [ Links ]

[43] Haigh D.G, Clarke T.J.W, Radmore P.M. Symbolic framework for linear active circuits based on port equivalence using limit variables. IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 53, no. 9, pp. 2011–2024, 2006.         [ Links ]

[44] Haigh D.G. A method of transformation from symbolic transfer function to active–RC circuit by admittance matrix expansion. IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 53, no. 12, pp. 2715–2728, 2006.         [ Links ]

[45] Haigh D.G, Radmore P.M. Admittance matrix models for the nullor using limit variables and their application to circuit design. IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 53, no. 10, pp. 2214–2223, 2006.         [ Links ]

[46] Haigh D.G, Tan F.Q, Papavassiliou C. Systematic synthesis of active–RC circuit building–blocks. Anal. Integr. Circuits Signal Processing, vol. 43, no. 3, pp. 297315, 2005.         [ Links ]

[47] Awad I.A., Soliman A.M. On the voltage mirrors and the current mirrors. Anal. Integr. Circuits Signal Processing, vol. 32, no. 1, pp. 79–81, 2002.         [ Links ]

[48] Soliman A.M, Saad R.A. The voltage mirror–current mirror pair as a universal element. International Journal of Circuit Theory and Applications 2009; DOI: 10.1002/cta.596        [ Links ]

[49] Sánchez–López C, Fernández F.V, Tlelo–Cuatle E, S.X.–D. Tan Pathological element–based active device models and their application to symbolic analysis, IEEE Transactions on Circuits and Systems I: Regular papers, 2011. DOI: 10.1109/TCSI.2010.20097696.         [ Links ]