SciELO - Scientific Electronic Library Online

 
vol.9 número1On the Weight Distribution of the Dual of some Cyclic Codes with Two Non Conjugated ZerosChaotic Systems Synchronization Via High Order Observer Design índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.9 no.1 Ciudad de México abr. 2011

 

Noise Effect Reduction on a MEMS Based AC Voltage Reference Source Using Artificial Neural Network

 

Samane Sadat Hashemipour1, Amir Abolfazl Suratgar2,3*, Hamid Hoseini4

 

1 M.Sc. Student, Department of Electrical Engineering, Arak A. University, Arak, Iran.

2 Assistant Professor, Department of Electrical Engineering, Arak University, Arak, Iran.

3 Assistant Professor, Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran. *E–mail: a–suratgar@araku.ac.ir, TEL: +98–861–223–2813, FAX:+98–861–222–5946.

4 Assistant Professor, Department of Electrical Engineering, Arak A. University, Arak, Iran.

 

ABSTRACT

This paper presents a new method in order to reduce noise effect in an AC voltage reference source. The AC voltage reference source is implemented on MEMS technology. It uses capacitive MEMS technology. The reference is based on the characteristic AC current–voltage curve MEMS component. The multilayer neural network is used. The neural network (NN) uses the Levenberg–Marquardt (LM) method for training. The noise effect on an electronic circuit is investigated. The simulation results are very promising.

Keywords: AC voltage reference source noise effect reduction, MEMS, Neural Network.

 

RESUMEN

El presente trabajo presenta un método nuevo para reducir el efecto de ruido en una referencia de fuente de voltaje de AC. La referencia de fuente de voltaje se implementa mediante tecnología MEMS; emplea tecnología capacitiva MEMS. La referencia se basa en la curva de corriente–voltaje de CA característica del componente MEMS. Se utiliza la red neuronal multicapas. La red neuronal (RN) usa el método Levenberg–Marquardt (LM) con fines de experimentación. Asimismo se investiga el efecto de ruido en un circuito electrónico. Los resultados de simulación son muy prometedores.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] M. Suhonen, H. Seppä, A.S. Oja, M. Heinilä, and I. Näkki, AC and DC Voltage Standards Based on Silicon Micromechanics, CPEM'98 Conf. Dig., 1998, pp. 23–24.         [ Links ]

[2] A. Karkkainen, N. Pesonen, M. Suhonen, J. Kyynarainen, A. Oja, A. Manninen, N. Tisnek, H. Seppa, AC Voltage Reference Based on a Capacitive Micromechanical Component, IEEE Trans. June 2004, pp. 119–120        [ Links ]

[3] A. Kärkkäinen, N. Pesonen, M. Suhonen, A. Oja, A. Manninen, N. Tisnek, and H. Seppä, MEMS based AC Voltage Reference, IEEE Trans. Instrum. Meas. 54, Apr. 2005, June 2004, pp. 595–599.         [ Links ]

[4] J. Kyynäräinen, A. S. Oja, and H. Seppä, Stability of Microelectromechanical Devices for Electrical Metrology, IEEE Trans. Instrum. Meas. 50, 2001, pp. 1499–1503.         [ Links ]

[5] Erik F. Dierikx, A MEMS–Stabilized AC Voltage Reference Source, IEEE Trans, VOL. 56, NO. 2, APRIL 2007        [ Links ]

[6] H. Seppa, Applications of Microsystems in precision measurements, IEEE conf,June 2004 Page(s):677 – 677.         [ Links ]

[7] R.F. Woffenbuttel.; C.J. van Mullem, The relationship between microsystem technology and metrology, IEEE Trans, Dec 2001 Page(s):1469 – 1474.         [ Links ]

[8] K. Kawano.;S. Shahrani.;T. Mori.;M. Kuroda.;M.M. Tentzeris, Dynamic and electrical analysis of MEMS capacitor with accelerated motion effects, , IEEE conf, April 2005 Page(s): 759 – 762.         [ Links ]

[9] Behera, M.; Kratyuk, V.; Yutao Hu; Mayaram, K. Accurate simulation of phase noise in RF MEMS VCOs,IEEE, Proceedings of the 2004 International Symposium on Volume 3, Issue , 23–26 May 2004 Page(s): III – 677–80 Vol.3.         [ Links ]

[10] A. Kärkkäinen, N. Tisnek, A. Manninen, N. Pesonen, A. Oja, and H. Seppä, Electrical stability of a MEMS–based AC voltage reference, Elsevier,2005.         [ Links ]

[11] S. Haykin, Neural Networks, A Comprehensive Foundation, Prentice Hall, 1999.         [ Links ]

[12] M. T. Hagan, H.B.Demuth, M. Beale,Pws.Publishing 1996.         [ Links ]

[13] A. Kärkkäinen, A. Oja, J. Kyynäräinen, H. Kuisma, and H. Seppä, Stability of Electrostatic Actuation of MEMS, Physica Scripta, T114, 2004, pp. 193–194.         [ Links ]

[14] S.M. Sze, Semiconductor devices, John Wiley & Sons Ltd, 2nd edition, 2002,ISBN 0–471–33372–7.         [ Links ]

[15] J. Wibbeler, G. Pfeifer, and M. Hietschold, Parasitic charging of dielectric surfaces in capacitive microelectromechanical systems (MEMS), Sensors and Actuators, A 71, 1998, pp. 74–80.         [ Links ]

[16] W.M. van Spengen, R. Puers, R. Mertens, and I. De Wolf, A comprehensive model to predict the charging and reliability of capacitive RF MEMS switches, J. Micromech. Microeng. 14, 2004, pp. 514–521.         [ Links ]

[17] D.K. Schroder and J.A. Babcock, Negative Bias temperature instability: Road to cross in deep submicron silicon semiconductor manufacturing, J. Appl. Phys. 94, July 2003, pp. 1–18.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons