SciELO - Scientific Electronic Library Online

 
vol.9 número1A Hybrid Metaheuristic Approach to Optimize the Districting Design of a Parcel Company índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.9 no.1 Ciudad de México abr. 2011

 

Maximum Likelihood Position Location with a Limited Number of References

 

D. Munoz–Rodriguez*1, L. Suarez–Robles2, C. Vargas–Rosales3, J. R. Rodriguez–Cruz4

 

1,2,3,4 Department of Electrical and Computer Engineering, ITESM–Monterrey. Av. Eugenio Garza Sada 2501 Sur, Monterrey, N.L., 64849, Mexico.*E–mail: dmunoz@itesm.mx

 

ABSTRACT

A Position Location (PL) scheme for mobile users on the outskirts of coverage areas is presented. The proposed methodology makes it possible to obtain location information with only two land–fixed references. We introduce a general formulation and show that maximum–likelihood estimation can provide adequate PL information in this scenario. The Root Mean Square (RMS) error and error–distribution characterization are obtained for different propagation scenarios. In addition, simulation results and comparisons to another method are provided showing the accuracy and the robustness of the method proposed. We study accuracy limits of the proposed methodology for different propagation environments and show that even in the case of mismatch in the error variances, good PL estimation is feasible.

Keywords: Position location, maximum likelihood, wireless networks.

 

RESUMEN

Se presenta un método de localización de la posición de dispositivos móviles en las fronteras de una región de cobertura. La metodología propuesta hace posible obtener la información de localización utilizando únicamente dos referencias fijas. Se introduce una formulación general y se muestra que la estimación de máxima verosimilitud puede proporcionar la información de localización de manera adecuada en este escenario. Se obtiene la caracterización del error de la posición por el valor rms del error y su distribución para diferentes escenarios de propagación. Además, a través de simulaciones y comparaciones con otros métodos, se muestra la exactitud y robustez de la metodología propuesta. Se estudian las limitaciones de exactitud de la metodología propuesta en diferentes ambientes de propagación y se muestra que aún en casos de diferencias en la varianza de los errores se obtiene una estimación de la posición con buena exactitud.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] B. Ludden, et. al., Report on implementation issues related to access to location information by emergency services (E112) in the European Union, Final Report, Coordination Group on Access to Location Information by Emergency Services C.G.A.L.I.E.S., available from http://www.telematica.de/cgalies/ February 2002        [ Links ]

[2] D. Munoz–Rodriguez, R. Estrada, C. Molina, and K. Basu, Cellular Position Location Techniques: a Parametric Detection Approach, Proceedings of the IEEE Vehicular Technology Conference, vol. 2, May 1999, pp. 1166–1171.         [ Links ]

[3] Y. Zhao, Standardization of Mobile Phone Positioning for 3G systems, IEEE Communications Magazine, vol. 40, No. 7, July 2002, pp. 108–116.         [ Links ]

[4] David Muñoz, Frantz Bouchereau, Cesar Vargas and Rogerio Enriquez, Position Location Techniques and Applications, 1st ed., Academic Press, 2009, pp. 23–100.         [ Links ]

[5] M. P. Wylie–Green and P. Wang, GSM Mobile Positioning Simulator, Proceedings of the IEEE Emerging Technologies Symposium: Broadband, Wireless Internet Access, April 2000, pp. 5.         [ Links ]

[6] D.J. Torrieri, Statistical Theory of Passive Location Systems, IEEE Transactions on Aerospace and Electronic Systems, vol. 20, no. 2, March 1984, pp. 183198.         [ Links ]

[7] I. Martin–Escalona, F. Barcelo, and J. Paradells, Delivery of Non–Standardized Assistance Data in E–OTD/GNSS Hybrid Location Systems, Proceedings of The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, vol. 5, September 2002, pp. 2347–2351.         [ Links ]

[8] Stoica Petre and Nehorai Arie, MUSIC, Maximum Likelihood, and Cramér–Rao Bound: Further Results and Comparisons, IEEE Transactions on Acoustic, Speech and Signal Processing, vol. 38, no. 12, December 1990, pp. 2140–2150.         [ Links ]

[9] R. B. Ertel and J. H. Reed, Angle and Time of Arrival Statistics for Circular and Elliptical Scattering Models, IEEE Journal on Selected Areas in Communications, vol. 17, no. 11, November 1999, pp. 1829–1840.         [ Links ]

[10] D. J. Sakrison, Communication Theory: Transmission of Waveforms and Digital Information, John Wiley & Sons, 1968        [ Links ]

[11] A. Andrade and D. Covarrubias, Radio Channel Spatial Propagation Model for Mobile 3G in Smart Antenna Systems, IEICE Transactions on Communications, vol. 8, 2003 pp. 213–220.         [ Links ]

[12] A. Y. Olenco, K. T. Wong and M. Abdulla, Analytically Derived TOA–DOA Distributions of Uplink/Downlink Wireless–Cellular Multipaths arisen from Scatterers with an Inverted–Parabolic Spatial Distribution Around the Mobile, IEEE Signal Processing Letters, vol. 12, No. 7, 2005, pp. 506–509.         [ Links ]

[13] R. Janaswamy, Angle and Time of Arrival Statistics for the Gaussian Scatter Density Model, IEEE Transactions on Wireless Communications, vol. 1, no. 3, July 2002, pp. 488–497.         [ Links ]

[14] W.C. Lee, Mobile Cellular telecommunications Systems, Mc.Graw–Hill, Singapore, 1989        [ Links ]

[15] K. I. Pedersen, P. E. Mogensen, and B. H. Fleury, A Stochastic Model of the Temporal and Azimuthal Dispersion Seen at the Base Station in Outdoor Propagation Environments, IEEE Transactions on Vehicular Technology, vol. 49, no. 2, March 2000, pp. 437–447.         [ Links ]

[16] S. Kullback and R. A. Leibler: On Information and Sufficiency, Ann. Math. Stat, 22, 1951, pp. 79–86.         [ Links ]

[17] W. H. Foy, Position Location Solutions by Taylor Series Estimation, IEEE Transactions on Aerospace and Electronic Systems, vol. 12, 1976, pp. 187–194.         [ Links ]

[18] C.G. Broyden, The Convergence of a Class of Double–Rank Minimization Algorithms, Journal Inst. Math. Applic., vol. 6, 1970, pp. 76–90.         [ Links ]

[19] R. Fletcher, A New Approach to Variable Metric Algorithms, Computer Journal, vol. 13, 1970, pp. 317322.         [ Links ]

[20] D. Goldfarb, A Family of Variable Metric Updates Derived by Variational Means, Mathematics of Computing, vol. 24, 1970, pp. 23–26.         [ Links ]

[21] D.F. Shannon, Conditioning of Quasi–Newton Methods for Function Minimization, Mathematics of Computing, vol. 24, 1970, pp. 647–656.         [ Links ]

[22] J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, John Wiley & Sons, 1965        [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons