SciELO - Scientific Electronic Library Online

 
vol.8 número1A model to design effective Production Improvement ProgramsExperimental and Numerical Characterization of CaPaMan 2bis Operation índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.8 no.1 Ciudad de México abr. 2010

 

Intelligent Positioning Fuzzy Servomechanism Under PWM Nonlinear Loads

 

D.Rangel1'2, A. L. Rivera2, P.D. Alaníz1, R. Castañeda1, V.M. Castaño*2

 

1 DEPFI, Facultad de Ingeniería, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Ciudad Universitaria, Querétaro, Qro., CP 76010, México.

2 Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Apartado Postal 1–1010, Querétaro, Qro., CP 76000, México. *meneses@servidor.unam.mx

 

ABSTRACT

An experimental intelligent angular positioning fuzzy servomechanism excited by a nonlinear load based on a mechanical transient Pulse Width Modulation (PWM) is developed. This fuzzy positioning system is capable of reaching the angular position with high precision even when the response is affected by the application of different PWM nonlinear loads.

Keywords: Fuzzy servomechanism, nonlinear load, fuzzy rotating control.

 

RESUMEN

Se desarrolla un servomecanismo difuso de posicionamiento angular inteligente experimental perturbado por cargas no–lineales basadas en transitorios mecánicos generados mediante la modulación de ancho de pulso (PWM). El sistema de posicionamiento difuso desarrollado es capaz de alcanzar la posición angular con gran precisión aún cuando la respuesta es afectada por la aplicación de distintas cargas PWM no lineales.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

The authors would like to thank Carlos R. Luna, Elohym G. Gayosso and Raul R. Hernández for their technical assistance. They also want to acknowledge Silvia C. Stroet from the Engineering Faculty at Universidad Autónoma de Querétaro for helping with the English proofreading of this document.

 

References

[1] Johnson, D.E., Johnson, J.R., Hilburn, J.L., Scott, P.D., Electric Circuit Analysis, 3d Ed, John Wiley & Sons, New York, USA, 1999, pp. 848.         [ Links ]

[2] Job, V.A., Mechatronic design, Mechatronics, Vol. 13, No. 10, December, 2003, pp. 1045–1066.         [ Links ]

[3] Li, S., Song, Y., Dynamic response of a hydraulic servo–valve torque motor with magnetic fluids, Mechatronics, Vol. 17, No. 8, October, 2007, pp. 442–447.         [ Links ]

[4] Cecco, M., Debei, S., Zaccariotto, M., Adaptive–randomized self–calibration of electromechanical shutters for space imaging, Mechanical Systems and Signal Processing, Vol. 20, November, 2006, pp. 2305–2320.         [ Links ]

[5] Stosky, A., Solyom, S., Kolmanovsky, I., Engine control using speed feedback, International Journal of Automotive Technology, Vol. 8, No. 4, 2007, pp. 477–481.         [ Links ]

[6] Huang, S.J., Wang, S.S., Mechatronics and control of a long–range nanometer positioning servomechanism, Mechatronics, Vol. 19, No. 1, February, 2009, pp. 14–28.         [ Links ]

[7] Zhao, Y.S., Chen, L.P., Zhang, Y.Q., Yang, J., Enhanced fuzzy sliding mode controller for launch control of AMT vehicle using a brushless DC motor drive, International Journal of Automotive Technology, Vol. 8, No. 3, 2007, pp. 383–394.         [ Links ]

[8] Tanaka, K., Wang, H.O., Fuzzy control systems design and analysis: a linear matrix inequality approach, Wiley Inter–Science, New York, 2001, pp. 305.         [ Links ]

[9] Dusko, M.K., Aleksandar, D.R., Miomir, K.V., Hybrid dynamic control algorithm for humanoid robots based on reinforcement learning, Journal of Intelligent and Robotic Systems, Vol. 51, No. 1, January, 2008, pp. 3–30.         [ Links ]

[10] González, G., Canales, A., León, A, Morales, J. R., Design of a torque generating system, Journal of Applied Research and Technology, Vol. 5, No. 2, August, 2007, pp. 65–73.         [ Links ]

[11] Ali, S.G., Mehdi, B., Investigation of the micro–step control positioning system performance affected by random input signals, Mechatronics, Vol. 15, No. 10, 2005, pp. 1175–1189.         [ Links ]

[12] Chiang, M.H., Chen, C.C., Tsou, T.N., Large stroke and high precision pneumatic–piezoelectric hybrid positioning control using adaptive discrete variable structure control, Mechatronics, Vol. 15, No. 5, 2005, pp. 523–545.         [ Links ]

[13] Smaoui, M., Brun, X., Thomasset, D., A study of tracking position of an electropneumatic system using backstepping design, Control Engineering Practice, Vol. 14, No. 8, 2006, pp. 923–933.         [ Links ]

[14] Farhad, A., John, M.H., Martin, B., A modular and high–precision motion control system with an integrated motor, IEEE/ASME Transactions on Mechatronics, Vol.12, No. 3, 2007, pp. 317–329.         [ Links ]

[15] Begovich, O., Sánchez, E.N., Maldonado, M., Takagi–Sugeno fuzzy scheme for real–time trajectory tracking of an underactuated robot, IEEE Transactions on Control Systems T., Vol. 10, No. 1, 2002, pp. 14–20.         [ Links ]

[16] Benitez, V.H., Sánchez, E.N., Loukianov, A.G., Neural identification and control for linear induction motors, Journal of Intelligent Fuzzy Systems, Vol. 16, No. 1, 2005, pp. 33–55.         [ Links ]

[17] Zadeh, L.A., Fuzzy sets, Information and Control, Vol. 8, 1965, pp. 338–353.         [ Links ]

[18] Chen, Y., Wong, C., Implementation of Takagi–Sugeno model–based fuzzy control using an adaptive gain controller, IEE Proc.–Control Theory Appl., Vol. 147, No. 5, September, 2000, pp. 509–514.         [ Links ]

[19] Papoulis, A., Probability, random variables and stochastic processes, McGraw–Hill, New York (1965).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons