SciELO - Scientific Electronic Library Online

 
vol.5 número1Real time TCP/IP control of modular production systems with FPGAs2x voltage generator analytical model índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.5 no.1 Ciudad de México abr. 2007

 

Mean receiver power prediction for indoors 802.11 WLANS using the ray tracing technique

 

J. Sánchez, C. Castro & L. Villaseñor

 

Electronics and Telecommunications Department, CICESE Research Center, Ensenada, Baja California C.P. 22860, MÉXICO, jasan@cicese.mx, temo_castro@hotmail.com, luisvi@cicese.mx

 

Abstract

A technique for the modeling of wireless channels, namely the image ray tracing algorithm, is developed in this work to predict the local mean received power of a wireless local area network (WLAN) based on the 802.11a standard operating in the 5 GHz band. This technique has been enhanced in order to account for the propagation of the electromagnetic waves thru a wireless environment, including the absorption and reflection phenomenon at obstacles. The image ray tracing algorithm is used to calculate all the possible propagation paths between a radio transmitter and a receiver. The simulation results of the mean received power strength are compared against field measurements to validate the convenience of the simulation approach.

Keywords: Mobile communications, WLANs, IEEE 802.11, 4th Generation wireless networks, Wireless channel model, Ray tracing.

 

Resumen

En este artículo se presenta una técnica de modelado de canal radio para interiores que es utilizada para predicción de potencia en redes de área local inalámbricas (WLAN) 802.11a en la banda de los 5 GHz, simulando los mecanismos de propagación de la onda electromagnética. La técnica utilizada para el modelado del canal radio es el trazado de rayos basado en imágenes, que calcula todas las trayectorias posibles desde el transmisor al receptor; en este trabajo se ha mejorado ésta técnica, al tomar en cuenta los fenómenos de reflexión y absorción de las ondas electromagnéticas por los obstáculos del ambiente de propagación. Los valores de potencia promedio obtenidos de las simulaciones son comparados contra mediciones realizadas en el sitio específico considerado, para validar la conveniencia del modelo de simulación.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

6. REFERENCES

[1] Cuiñas, I., Sánchez, M. G., de Haro, L. Ray Tracing Tools For Propagation Simulation; COST action 256; Paper no. TD/256/99/25; April 2000.         [ Links ]

[2] Laureson, D. I., McLaughlin, S., Sheikh, A. U. H. A Ray Tracing Approach To Channel Modeling For The Indoor Environment; 43rd IEEE Vehicular Technology Conference; 1993; Secaucus, New Jersey, US; pp. 246-249.         [ Links ]

[3] Trueman, C. W., Panknys, R., Zhao, J., Davis, D., Segal, B. Ray Tracing Algorithm for Indoor Propagation; Applied Computational Electro-magnetics Society; Proc 16th Annual Review of Progress in Applied Computational Electro-magnetics; Monterey, CA.; March 2000; pp. 493-500.         [ Links ]

[4] Valenzuela, R. A. A Ray Tracing Approach to Predicting Wireless Transmission; 43rd IEEE Vehicular Technology Conference 1993 VTC 93; Secaucus, New Jersey, US.         [ Links ]

[5] Wöfle, G., Hoppe, R., Landstorfer, F. M., A Fast and Enhanced Ray Optical Propagation Model for Indoor Urban Scenarios, Based on an Intelligent Preprocessing of the Database; 10th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications 1999 (PIMRC'99); Osaka, Japan.         [ Links ]

[6] Flores, S. J., Mayorgas, L. F., Jiménez, F. A. Reception Algorithms For Ray Launching Modeling Of Indoor Propagation; IEEE Radio and Wireless Conference, RAWCON'98; 1998. Colorado Springs, CO; pp. 261-264.         [ Links ]

[7] Hassan-Ali, M., Pahlvan, K. A New Statistical Model For Site-Specific Indoor Radio Propagation Prediction Based On Geometric Optics And Geometric Probability; IEEE Transactions on Wireless Communications; Vol.1; No.1; 2002. pp. 112-124.         [ Links ]

[8] Neskovic A., Neskovic, N. G. Modern Approaches In Modeling Of Mobile Radio Systems Propagation Environment; IEEE Communications Surveys; Vol.3; 2000; pp. 2-12.         [ Links ]

[9] Fortune, S. Efficient Algorithms For Prediction Of Indoor Radio Propagation; Proceedings of 48th IEEE Vehicular Technology Conference 1998; Ottawa, Ontario, Canada.         [ Links ]

[10] Valenzuela, R. A., Fortune, S., Ling, J. Indoor Propagation Prediction Accuracy Versus Number of Reflections in Image-Based 3-D Ray-Tracing; 48th IEEE Vehicular Technology Conference, 1998 VTC 98.; Ottawa, Ontario, Canada;1998; pp. 539-543.         [ Links ]

[11] Cuiñas, I., García, S. M. Measurement, Modeling, And Characterizing Of Indoor Radio Channel At 5.8 GHz.; IEEE Transactions on Vehicular Technology; Vol. 50; No. 2; 2001; pp. 526-535.         [ Links ]

[12] Vaughn R., and Andersen J. B. Channels, Propagation and Antennas for Mobile Communications, IEEE 2003.         [ Links ]

[13] http://www.netstumbler.com        [ Links ]

[14] Hills, A., Schlegel, J. Rollabout: A Wireless Design Tool; IEEE Communications Magazine; Vol. 42; No. 2; 2004; pp. 132-138.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons