SciELO - Scientific Electronic Library Online

 
vol.3 número2A hardware implementation of punctured convolutional codes to complete a Viterbi decoder coreCharacterization of the discharge coefficient of a sonic Venturi nozzle índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.3 no.2 Ciudad de México ago. 2005

 

Ac-electrokinetics based tools in nanoengineering and molecular electronics

 

A. Ramírez, A. Zehe & R. Durán

 

Benemérita Universidad Autónoma de Puebla, Facultad de Cs. de la Electrónica, Dept. Posgrado, Apdo. Post. # 1505, 72000 Puebla, Pue., México. aramirs@siu.buap.mx

 

Received: May 28th, 2003.
Accepted: April 21th, 2005.

 

Abstract

Silicon-based microelectronics has been following the integration prognosis of MOORE's Law during the past decades and possibly will do so for another decade or two. Physical, technological and also financial limits in the foreseeable future will slow down the continued expansion of this branch of microelectronics and instead will force a new technological approach based on molecular-scale electronics (MOLETRONICS). New tools are needed to allow molecular device manufacturing and nanoscale engineering with high precision and productivity. One group of methods with the potential for use in such a manufacturing process is based on a.c. electrokinetics effects, which are described and discussed in this paper.

Keywords: Embedded Electrokinetics, Dielectrophoresis, Electrorotation, Dielectric Polarization, Nanoengineering.

 

Resumen

La microelectrónica en base a silicio ha seguido la prognosis de integración según la ley de MOORE durante las décadas pasadas, y posiblemente continuará así por otra década más. Límites físicos, tecnológicos y también financieros en el futuro cercano reducirán la razón de expansión de esta rama microelectrónica, y en su lugar generará una aproximación tecnológica novedosa, que se basa sobre la electrónica a escala molecular (MOLETRÓNICA). Se requieren nuevas herramientas, que permitan la fabricación de dispositivos moleculares y la ingeniería a escala nanométrica con alta precisión y productividad. Un grupo de métodos con el potencial de ser usado en tal proceso de fabricación se basa en efectos electrocinéticos en campos eléctricos alternos, que en el presente trabajo se describe y discute.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

ACKNOWLEDGEMENT

Financial support of the BUAP through grant III 35 G02 (2003) is kindly acknowledged.

 

REFERENCES

[1] Drexler K.E., Molecular Engineering: an Approach to the Development, of General Capabilities for Molecular Manipulation, Proc. Natl. Acad. Sci. USA, Vol. 78, NO. 9, pp. 5275-5278, 1981.         [ Links ]

[2] Polla L., Erdman G., Robbins P., Markus T., Diaz-Diaz, Nam, and Brickner, Wang and Krulevitch, Microdevices In Medicine, Annu. Rev. Blomed. Eng. 02:551-76, 2000.         [ Links ]

[3] Adleman L.M., Molecular computation of solutions to combinatorial problems. Science 226,1021-1024, 1994.         [ Links ]

[4] Drexler K.E., Nanosystems,- Molecular Machinery, Manufacturing and Computation, New York.- Wiley, 1992.         [ Links ]

[5] Feynman R., Infinitesimal machinery, reprinted In J. Micromech. Syst. 2, 4-14, 1993.         [ Links ]

[6] Sitti M., Survey of Nanomanipulation Systems, Proc. of the lEEE-Nanotechnology Conference, pp. 75-80, 2001.         [ Links ]

[7] Binnig G., Quate C.F., and Gerber C., Atomic Force Microscope, Phys. Rev. Lett., Vol. 56, pp. 930-933, 1986.         [ Links ]

[8] Hillner P., Walters D., and et al. Combined atomic force and confocal laser scanning microscope, JMSA, Vol. 1, pp. 127-130, 1995.         [ Links ]

[9] Green N.G., Morgan H., and Milner J.J., Manipulation and trapping of sub-micron bioparticles using dieledrophoresls, J. Biochem. Biophys. Methods, 35, 89-102, 1997.         [ Links ]

[10] Batchelder J.S., Dielectrophoretic manipulator. Rev. Sci. Instrum. 54, 300-2, 1983.         [ Links ]

[11] Zehe A., Tecnología Epitaxial de Silicio, pp 1-305, ISBN 3-8311-1438-2 Editorial Intercon (Alemania, Norderstedt) 2000.         [ Links ]

[12] Zehe A., Moletrónica: La electrónica a escala molecular entre semiconductores y arreglos moleculares, http://www.moletronica.buap.mx         [ Links ]

[13] Chuart T., & Deschenaux, Desing R., Mesomorphic properties, and supramolecular organization of (C) fullerence-containning thermotroi cliquid crystal. J. Mater. Chem. 12,1944-1951, 2002.         [ Links ]

[14] Braach-Maksvytis V., Raguse B., Nanobiosystems, APEC Meeting on Nanotechnology, Nov. 5-7, Ottawa, Canada, 2001.         [ Links ]

[15] Herman M.A., Sitter H., Molecular Beam Epitaxy, Springer- Verlag Berlin Heidelberg New York, London, Paris, Tokyo, 1989.         [ Links ]

[16] Christensen A.N., (ed.). Crystal Growth and Characterization of Advanced Materials, World Scientific Publishing Co. Pte. Ltd., ISBN 9971-50-730-7, 1988.         [ Links ]

[17] Roberts G.G., ed., Langmuir-Blodgett Films: An Introducción, Cambridge, Great Britain: Cambridge University Press, 1996.         [ Links ]

[18] Ulman A., An Introduction of Ultrathin Organic Films., New York: Academic Press, 1991.         [ Links ]

[19] Jones T.B., Electromechanics of Particles Cambridge: Cambridge University Press, 1995.         [ Links ]

[20] Ramos A., Morgan H., Green N.G., and Castellanos A., AC electrokinetics: a review of forces In microelectrode structures, J. Phys. D: Appl. Phys. 31 2338-53, 1998.         [ Links ]

[21] Zimmermann U., and Neil G.A., Electromanipulation of Cells, Boca Raton, F.L: Chemical Rubber Company, 1996.         [ Links ]

[22] Washizu M., Suzuki S., Kurosawa O., Nishizaka T., and Shinohara T., Molecular dieledroforesis of biopolymers, IEEE Trans. Ind. Appl. 30 835-42, 1999.         [ Links ]

[23] Morgan H., Hughes M.P., and Green N.G., Separation of sub-micron particles by dielectrophoresis, Biophys. J. 77 516-25, 1999.         [ Links ]

[24] Funatsu T., Harada Y., Higuchl H., and et al., Imaging and nano-manlpulation of single biomolecules, Biophysical Chemistry, Vol. 68, pp. 63-72, 1997.         [ Links ]

[25] Katsura S., Yamaguchi A., and et al., Manipulation of globular DNA molecules for sizing and separation, Eledrophoresis, Vol. 21, pp. 171-175, 2000.         [ Links ]

[26] Yamamoto T., Kurosawa O., Molecular surgery of DNA based on eledrostatic micromanipulation, IEEE Trans, on Industry Appl., Vol. 36, no. 4, pp. 1010-1017, 2000.         [ Links ]

[27] Mehta A., Rief M., and et al., Single-molecule biomechanics with optical methods, Science, Vol. 283, pp. 1689-1695, 1999.         [ Links ]

[28] Ishii Y., Ishijima A., and Yamagida T., Single molecule nanomanipulation of biomolecules. Trends in Biotechnology, Vol. 19, no. 6, 2001.         [ Links ]

[29] Landau L.D., Lifschitz E.M., Elecktrodynamik der Kontinua (Continuum Electrodynamics), Vol. 8 Akademic-Verlag. Berlin, 1985.         [ Links ]

[30] Bones T.B., Electromechanics of Particles .Cambridge Univ. Press, Cambridge, 1995.         [ Links ]

[31] Paul R., Otwinowski M. J. Theor. Biol. 148 495, 1991.         [ Links ]

[32] Bohren CF., Huffman DR., Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.         [ Links ]

[33] Sebastián JL, Muñoz S., Sancho M., Miranda J., Phys. Med. Biol. 46 213, 2001.         [ Links ]

[34] Hughes MP., Computer-aided analysis of conditions for optimizing pradical electrorotation, Phys. Med. Biol. 12, 3639-48, 1998.         [ Links ]

[35] Reichle, Müller, Schnelle and Fuhr, Electro-rotation in octopole micro cages, J. Phys. D: Appl. Phys. 32, 2128-2135, 1999.         [ Links ]

[36] Gascoyne PRC, Huang Y., Pethig R., Vykoukal J., and Beccker F.F., Dieledrophoretic separation of mammalian cells studied by computerised image analysis Meas. Sei. Technol. 3, 439-45, 1992.         [ Links ]

[37] Markx G.H. and Pething R., Dielectrophoretic separation of cells: continuous separation, Biotechnol. Bloeng. 45, 337-43, 1994.         [ Links ]

[38] Pethig R., Dieledrophoresis: using inhomogeneous AC eledrical fields to separate and manipulate cells, Crit. Rev. Biotechnol. 16. 331-48, 1996.         [ Links ]

[39] Hughes M.P., Morgan H., Rixon F.J., Burt J.P.H., and Pethig R., Manipulation of herpes Simplex virus type 1 by dielectrophoresis, Biochim, Biophys. Acta 1425, 119-26, 1998.         [ Links ]

[40] Washizu M., Kurosawa O., Arai I., Suzuki S., and Shimamato N., Applications of electrostatic strech and positioning of DNA, IEEE Trans. Ind. Appl. 31, 447-56,1994.         [ Links ]

[41] Velev O., and Kaier E.W., In situ assembly of colloidal particles into miniaturized biosensors, Langmuir 15, 3693-2698, 1999.         [ Links ]

[42] Zehe A., Ramirez A., The depolarization field in polarizable objets of general shape, Rev. Mex. Fis. 48, 427-431, 2002.         [ Links ]

[43] Hagedorn R., Fuhr G., Müller T., Schnelle T., Schakenberg U., and Eagner B., Desing of asynchronous dielectric micromotors, J. Electrost. 33, 159-85,1994.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons