SciELO - Scientific Electronic Library Online

 
vol.2 número1Modeling an improved method for double modulation photo reflectance experiments índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.2 no.1 Ciudad de México abr. 2004

 

CNC machine tools for low cost micro devices manufacturing

 

E. Kussul1, L. Ruiz-Huerta1, A. Caballero-Ruiz1, A. Kasatkin2, L. Kasatkina2, T. Baidyk1 & G. Velasco1

 

1 Center of Applied Science and Technological Development, National Autonomous University of Mexico.

2 International Research and Training Center of Information Technologies and Systems, National Academy of Sciences of Ukraine.

 

Received: January 29th, 2002.
Accepted: January 13th, 2004.

 

Abstract

A new technology for production of low-cost micromechanical devices is proposed. This technology is based on concepts already known in conventional mechanics, used to produce a number of equipment of smaller sizes generation after generation. It is necessary to adapt each generation of equipment to the changes in physical behavior due to the decreasing scale. This technology is developed in the context of the microfactory creation. The main requirements for microequipment development are discussed. Also, the micromachine tool prototypes belonging to the first generation are developed and tested in the Laboratory of Micromechanics and Mechatronics of the Center of Applied Research and Technological Development, UNAM. The equipment characterization is done. The microfilter design and fabrication is described as an example of the practical application.

Keywords: Micromachine tool, Microfilters, Accuracy.

 

Resumen

En este trabajo se presenta una nueva tecnología para la producción de dispositivos micromecánicos de bajo costo, dentro del contexto de desarrollo de microfábricas. Ésta tecnología propone producir una serie de generaciones de equipo cada vez de menor tamaño, basándose en los conceptos ya conocidos de la mecánica convencional. Se describe también la necesidad de adaptar cada generación de equipo a los cambios de comportamiento físico originados por el decremento de escala. Los principales requerimientos para el desarrollo de microequipo son discutidos y unas micromáquinas herramientas pertenecientes a la primera generación de microequipo, desarrolladas en el Laboratorio de Micromecánica y Mecatrónica del Centro de Ciencias Aplicadas y Desarrollo Tecnológico, UNAM, son descritas y probadas. El diseño y fabricación de un microfiltro es utilizado como un ejemplo de la aplicación práctica.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

Acknowledgements to Laboratory of Metrology and Laboratory of Materials and Sensors (CCADET UNAM), in particular to José M. Saniger Bleza, José G. Bañuelos Muñetón, Rigoberto Nava Sandoval, Gerardo Ruiz Botello and José Sánchez Viscaíno, and for help in the manufacturing to Mr. Mario Rodríguez Segundo.

This work was supported by projects IN-118799, CONACYT 33944-U, NSF-CONACYT 39395A, PAPIIT IN-112102.

 

Reference

[1] Kussul E.M., Rachkovskij D.A., Baidyk T.N. et al., Micromechanical engineering: a bases for the low-cost manufacturing of mechanical microdevices using microequipment. Journal of Micromechanics and Microengineering, No. 6, pp.410-425. 1996.         [ Links ]

[2] Handbook of Microlithography, Micromachining and Microfabrication. V.2: Micromachining and Microfabrication, Ed. by P. Rai-Choundhury, SPIE Press, pp.622. 1997.         [ Links ]

[3] Ohlckers P., Jakobsen H., High Volume Production of Silicon Sensor Microsystems for Automotive Applications, in Digest of IEEE Colloquium on Assembly and Connection in Microsystems (No 1997/004), pp. 8/1-8/7. 1997.         [ Links ]

[4] Eddy D.S., Sparks D.R., Application of MEMS Technology in Automotive Sensors and Actuators, in Proceedings of the IEEE, V.86, Issue 8, pp. 1747-1755. 1998.         [ Links ]

[5] Madni A.M., Wan L.A., Micro Electro Mechanical Systems (MEMS): an Overview of Current State-of-the Art, in Proceedings of IEEE Aerospace Conference, V.1, pp. 421-427, 1998.         [ Links ]

[6] Comtois J.H., Michalicek M.A., Clark N., Cowan W., MOEMS for Adaptive Optics, In: IEEE/LEOS Summer Topical Meetings, Broadband Optical Networks and Technologies: An Emerging Reality/ Optical MEMS/ Smart Pixels/Organic Optics and Optoelectronics. II/95-II/96, 1998.         [ Links ]

[7] Johnson M.D., Hughes G.A., Gitlin M.L., Loebel N.G., Paradise N.F., Cathode Ray Addressed Micromirror Display, In Proceedings of the 13-th Biennial University/ Government / Industry Microelectronics Symposium, pp.158-160, 1999.         [ Links ]

[8] Wu H.D., Harsh K.F. Irwin R.S. Wenge Zhang, Mickelson A.R., Lee Y.C., Dobsa J.B., MEMS Designed for Tunablen Capacitors, In IEEE MTT-S International Microwave Symposium Digest, V.1, pp. 127-129, 1998.         [ Links ]

[9] Wu S., Mai J., Tai Y.C., Ho C.M., Micro Heat Exchanger by Using MEMS Impinging Jets, in Proceedings of the 12-th IEEE International Conference on Micro Electro Mechanical Systems, pp.171-176, 1999.         [ Links ]

[10] Dohi T., Computer Aided Surgery and Micro Machine, in Proceedings of the 6-th International Symposium on Micro Machine and Human Science, pp. 21-24, 1995.         [ Links ]

[11] Katsura S., Hirano K., Yamaguchi A., Ishii R., Imayou H., Matsusawa Y., Mizuno A., Manipulation of Chromosomal DNA and Localization of Enzymatic Activity, in Proceedings of 32-th IAS Annual Meeting, Industry Applications Conference, V.3, pp.1983-1989, 1997.         [ Links ]

[12] Sun L., Sun P., Qin X., Wang C., Micro Robot in Small Pipe with Electromagnetic Actuator, in Proceedings of the International Symposium on Micromechatronics and Human Science, pp. 243-248, 1998.         [ Links ]

[13] Micro Mechanical Systems: Principles and Technology, Ed. By T.Fukuda and W.Menz, Elsevier Science B.V., pp.268, 1998.         [ Links ]

[14] Mazuzawa T., An Approach to Micromachining through Machine Tool Technology, in Proceedings of the 2nd International Symposium Micro Machine and Human Science, Japan, pp.47-52, 1991.         [ Links ]

[15] Friedrich C.R., Vasile M.J., Journal of Microelectromechanical Systems, No. 5, pp.33-38, 1996.         [ Links ]

[16] Friedrich C.R., Kang S.D., Micro Heat Exchangers Fabricated by Diamond Machining, Precision Engineering, No. 16, pp.56-59, 1994.         [ Links ]

[17] Yamagata Y., Higuchi T., Four Axis Ultra Precision Machine Tool and Fabrication of Micro Parts by Precision Cutting Technique, in Proceedings of the 8th International Precision Engineering Seminar, France, pp.467-470. 1995.         [ Links ]

[18] Ishihara H., Arai F., Fukuda T., IEEE/ASME Transactions on Mechatronics, V.1, pp.68-79. 1996.         [ Links ]

[19] Some Micro Machine Activities in Japan, Report ATIP96.021. 1996.         [ Links ]

[20] Kussul E.M., Baidyk T.N., Rachkovskij D.A., Talayev S.A., The Method of Micro Devices Manufacturing, Russian Patent N 2105652. 1997.         [ Links ]

[21] Kussul E.M., Micromechanics as a New Area of Neural Network Applications, in Proceedings of EUFIT'97, vol.1, pp.521-523. 1997.         [ Links ]

[22] Kussul E.M., Rachkovskij D.A., Artykutsa S.Y., Kasatkin A.M., Kasatkina L.M., Lukovich V.V., Talayev S.A., Adaptive Control System for Fully Automated Micromechanical Factory: The Problems and Possible Neural Network Solutions, in Proceedings of EUFIT'97, V.1, pp.524-527. 1997.         [ Links ]

[23] Wunsch D.C., Kussul N.N., Kussul M.E., Adaptive Critic Design for Optimization of Micromechanical Factory Neural Control Systems, in Proceedings of EUFIT'97, V.1, pp.528-533. 1997.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons