SciELO - Scientific Electronic Library Online

 
vol.24 número3Temperature distribution in a p-n thermoelectric module: Quadratic approximation with respect to an electrical currentCrecimiento en fluido fisiológico simulado de hidroxiapatita sobre películas de PMMA sílice-CaO índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Superficies y vacío

versión impresa ISSN 1665-3521

Superf. vacío vol.24 no.3 México sept. 2011

 

Chemical and electrical diagnosis of two configurations of dielectric barrier discharges applied to nitric oxides degradation

 

Estrada Martínez N.ª, Valdivia Barrientos R. 1,ª, Pacheco Sotelo J. 1,ª, García Estrada R.ª, Garduño Aparicio M.ª, Pacheco Pacheco M.b y Rivera Rodríguez C.b

 

ª Instituto Tecnológico de Toluca.

b Instituto Nacional de Investigaciones Nucleares.

 

Recibido: 13 de mayo de 2011;
Aceptado: 4 de agosto de 2011

 

Abstract

The distinctive of non-thermal plasma (NTP) techniques is the efficient use of electrical energy through selective decomposition of the pollutant molecules. NTP processes can simultaneously treat several pollutants at atmospheric pressure with a quite good efficiency at relatively low energy consumption. In this work, NTP was used to remove nitric oxides from a mixture of air, water vapor and helium. Non thermal plasma was generated by dielectric barrier discharge at atmosphere pressure. In this work two different configurations were employed for the process: single dielectric barrier discharge (DBD) and double dielectric barrier discharge (2DBD). The aim of this work is to determine which configuration is most suitable for NOx treatment. A chemical model was developed to observe the species behavior in the plasma and results of numerical simulation demonstrated a good agreement with experimental data of the removal process, achieving more than 96% of NOx removal efficiency. From an electrical diagnosis several experimental parameters such as power, frequency, initial concentration of NOx and specific input energy were tested.

To determine the electronic temperature and electronic densities in the plasma, an optical emission spectroscopy study was accomplished.

Keywords: Non-thermal plasma; Dielectric barrier discharge; Nitric oxides degradation; Removal process.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

We are very indebted to M. Duran, F. Ramos, M. Hidalgo, G. Soria, J. Silva, F. Martínez and E. Alba for the experimental support. The presentation of this work was supported financially by CONACYT for the scholarship CVU 225878, SUTIN, COMECYT and the Organizing Committee of the 30th Annual Meeting of the SMCTSM.

 

References

[1]. Ferrís I, Tortajada J, García I, Castell J, López A, Journal Specialist Pediatric, 57, 213, (2001).         [ Links ]

[2]. Chang J. S, IOP Physics Reviews, No.3, Vol. 2, 2001, 571–574        [ Links ]

[3]. Lowke J, Morrow R, IEEE Transactions on Plasma Science, 23, 661 (1995).         [ Links ]

[4]. Kogelschatz U, ABB Corporate Research Ltd, Baden, Switzerland, 5, 5405 (2000).         [ Links ]

[5]. Kim Y, Woo S, Hong S, Young H, IEEE Transactions on Plasma Science, 22, 305 (2000).         [ Links ]

[6]. Pacheco M, Pacheco J, Moreno H, Diaz J, Mercado A, Yousfi M, Plasma Science and Technology, 9, 682 (2007).         [ Links ]

[7]. Valdivia R, Pacheco J, Pacheco M, Benítez Read J S, López R, Plasma sources science and technology, 15, 237 (2006).         [ Links ]

[8]. Chang J. S, Urashima K, Tong Y, Journal of Electrostatics, 57, 313 (2003).         [ Links ]

[9]. Vacquié S, Sciences et techniques de l'ingénieur: L'arc électrique, Tome I, Editions EYROLLES, 2000, 238–247        [ Links ]

[10]. PhysicsNIST,2010. http://physics.nist.gov/PhysRefData/ASD/lines_form.html        [ Links ]

[11]. Restrepo E, Devia A, Revista colombiana de física, 34, 748 (2002).         [ Links ]

[12]. Valdivia R, Pacheco M, Pacheco J, Estrada N, Ramos F, García J, Freton P, International Conference on Phenomena in Ionized Gases, Cancún, México, 2009,         [ Links ]

[13]. Manley T.C, Trans. Electrochem, 84, 83 (1943).         [ Links ]

[14]. Kogelschatz U, Plasma Chemistry and Plasma Processing, 23, 1 (2002).         [ Links ]

[15]. Deng Xu Tao, Kong Michel G, IEEE Transactions on plasma science, 32, 1709 (2004).         [ Links ]

[16]. Civitano L, Dinelli G, Busi F, Gallimberti M. R, IEEE Transactions on Plasma Science, 15, 814 (2006).         [ Links ]

[17]. Liu S, Neiger M, Journal of physics. D, Applied physics, 36, 1565 (2003).         [ Links ]

[18]. Fridman A, Plasma Chemistry, Cambridge University Prees, First published, 328 (2008).         [ Links ]

[19]. Cormier J. M, GREMI Université d'Orléans, 130 180 (2005).         [ Links ]

 

Note

The Editors thank to the Physics Department of the Centro de Investigación y de Estudios Avanzados del IPN for the support in the publication of this issue, and the cooperation of M en C. Alejandra García Sotelo and Eng. Erasmo Gómez.