SciELO - Scientific Electronic Library Online

vol.23 número4Síntesis y estudio de resonancia paramagnética electrónica de CaMnO3 y Eu0.05Ca0.95MnO3 obtenidos por coprecipitación índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados




Links relacionados

  • No hay artículos similaresSimilares en SciELO


Superficies y vacío

versión impresa ISSN 1665-3521

Superf. vacío vol.23 no.4 México dic. 2010


Improving the electrical properties of non–intentionally doped n–GaN by deuteration


J. Mimila–Arroyoa)1, E. Morales1, A. Lusson2, J. M. Laroche2, F. Jomard2 and M. Tessier2


Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Av. Instituto Politécnico Nacional No 2508, México D.F., CP 07360, México. a)

Groupe d'Etude de la Matière Condensée (GEMaC), CNRS Université de Versailles Saint Quintin–en–Yvelines 1 place A. Briand, 92195 Meudon Cedex, France.


Recibido: 30 de septiembre de 2010.
Aceptado: 6 de diciembre de 2010.



Here we report on the study of the effects on the charge transport properties of deuterium in–diffusion in non–intentionally doped n–GaN using a two steps process: a low temperature deuterium diffusion and then a thermal anneal at temperatures as high as 800 °C, for driving the deuterium deeper into the material. The obtained results show that deuteration by this two steps process produces a decrease on the electron concentration of at least one order of magnitude and an increase of the same order on electron mobility. Such improvements are attributed, respectively, to the capture of free electrons by free deuterium acceptor and to the deuterium passivation of deep acceptor levels located at the dislocations core, decreasing their dispersive and recombination capability. The observed improvement remains stable at temperatures close to 800 °C. This deep acceptor level passivation should positively impact the performance of electronic devices made with non–intentionally doped n–GaN layers.

Keywords: Deuteration; Gallium nitride; Passivation.





[1]. T. Palacios, Phys. Status Solidi A, 206, No 6, 1145 (2009).         [ Links ]

[2]. U. K. Mishra, S. Likun, T.E. Kazior, and Y. F. Wu, Proc. of the IEEE 96, No. 2, 287 (2008).         [ Links ]

[3]. K. P. Korona, A. Drabinska, P. Caban, and W. Strupinski, J. Appl. Phys. 105, 083712 (2009).         [ Links ]

[4]. D. Hofstetter, R. Theron, E. Baumann, F. R. Giorgetta, S. Golka, G. Strasser, F. Guillot and E. Monroy, Electron. Lett. 44, 986 (2008).         [ Links ]

[5]. D. Hofstetter, E. Baumann, F. R. Giorgetta, F. Guillot, S. Leconte and E. Monroy, Appl. Phys. Lett. 91, 131115 (2007).         [ Links ]

[6]. M. Ortolani, A. Di Gaspare, E. Giovine, F. Evangelisti, V. Foglietti Proc. of the 34th International Conf. on Infrared, Millimeter, and Terahertz Waves. IORMMW–THz, (2009).         [ Links ]

[7]. J. S. Speck and S. J. Rosner, Physica B 274, 24 (1999).         [ Links ]

[8]. J. H. You, J. Q. Lu and H. T. Johnson, J. Appl. Phys. 99, 033706 (2006).         [ Links ]

[9]. K. Horio and A. Nakajima, Jpn. J. Appl. Phys. 47, 3428 (2007).         [ Links ]

[10]. M. Faqir, G. Verzellesi, A. Chini, F. Fantini, F. Danesin, G. Menghesso, E. Zanoni, and C. Dua, IEEE Trans. on Dev. and Mat. Reliability, 8, 240 (2008).         [ Links ]

[11]. S. Arulkumaran, T. Egawa, S. Matsui and H. Ishikawa, Appl. Phys. Lett. 86, 123503 (2005).         [ Links ]

[12]. F. A. Marino, N. Faralli, T. Palacios, D. K. Ferry, S. M. Goodnick and M. Saraniti, IEEE Trans. on Electron Dev. 57, 353 (2010).         [ Links ]

[13]. Y. S. Lin, Y. W. Lain and H. S. S. Hsu, IEEE Electron Dev. Lett. 31, 102 (2010).         [ Links ]

[14]. E. Arslan, S. Bütün, S. B. Lisesivdin, M. Kasap, S. Ozcelik and E. Ozbay, J. Appl. Phys. 103, 103701 (2006).         [ Links ] [15]. N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, J. App. Phys. 83, 3656 (1998).         [ Links ]

[16]. D. C. Look and J. R. Sizelove, Phys. Rev. Lett. 82, 1237 (1999).         [ Links ]

[17]. J. L. Farvacque, Z. Bougrioua, and I. Moerman, J. Phys. Condens. Matter. 12, pp.10213 (2000).         [ Links ] [18]. M. N. Gurusinghe and T. G. Andersson, Phys. Rev. B. 67, 235208 (2003).         [ Links ]

[19]. U. Jahn, O. Brandt, E. Luna, X. Sun, H. Wang, D. S. Jiang, L. F. Bian and H. Yang, Phys. Rev. B, 81, 125314 (2010).         [ Links ]

[20]. E. Muller, D. Gerthsen, P. Brückner, E. Scholz, Th. Gruber, and A. Waag, Phys. Rev. B, 73, 245316 (2006).         [ Links ]

[21]. J. Chevallier and B. Pajot, Solid State Phenomena 85–86, 203 (2002), Editor S. Pizzini, Publisher Trans. Tech. LTD (Switzerland)        [ Links ]

[22]. J. Neugebauer and C. G. Van de Walle, Phys. Rev. Lett. 75, 4452 (1995).         [ Links ]

[23]. J. Mimila–Arroyo, M. Barbé, F. Jomard, J. Chevallier and M. A. di Forte–Poisson, Appl. Phys. Lett. 90 072107 (2007).         [ Links ]

[24]. A. Hierro, A. R. Arehart, B. Heying, M. Hansen, U. K. Mishra, S. P. Den Baars, J. S. Speck and S. A. Ringel, Appl. Phys. Lett. 80, 805 (2002).         [ Links ]

[25]. Hierro, S. A. Ringel, M. Hansen, A. J. S. Speck, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 77, 1499 (2000).         [ Links ]

[26]. J. Kamiura, Y. Yamashita and S. Nakamura, Jpn. J. of Appl. Phys. 37, L970 (1998).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons