SciELO - Scientific Electronic Library Online

 
vol.23 número2Digital phase-analyzer for low frequency applications based on reconfigurable hardwareEstudio de los estados iniciales durante el proceso de nitruración postdescarga índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Superficies y vacío

versión impresa ISSN 1665-3521

Superf. vacío vol.23 no.2 Ciudad de México jun. 2010

 

Electrochemical performance of a nanostructured Pd70Co20Mo10 MEA

 

Mauricio Garza–Castañón1*, M.A. Jiménez1, J.L. Acevedo–Dávila1, F. Loyola, U. Cano2, O.V. Kharissova3, S. Velumani4 and L. E. Garza Castañón4

 

1 Corporación Mexicana de Investigación en Materiales S.A. de C.V. Ciencia y Tecnología # 790, Fracc. Saltillo 400, C.P. 25290, Saltillo Coahuila, México. *magarza@comimsa.com.

2 Hydrogen and fuel cells group, Instituto de Investigaciones Eléctricas, Cuernavaca Morelos Reforma # 113 Col Palmira, C.P. 62490, Cuernavaca Morelos, México.

3 Facultad de Ciencias Físico–Matemáticas, UANL, Monterrey, México Pedro de Alba S/N, Ciudad Universitaria, C.P. 66450, San Nicolás de los Garza, N.L. México.

4 ITESM Campus Monterrey Ave. Eugenio Garza Sada #2501 Sur Col. Tecnológico, Monterrey Nuevo León, México, C.P. 64849

 

Recibido: 30 de noviembre de 2009.
Aceptado: 23 de abril de 2010.

 

Abstract

Results obtained by open circuit and potentiodynamic tests directly on a PEM fuel cell for a nanostructured Pd70Co20Mo10 MEA are reported. A comparison of these results with the open circuit results obtained from a commercial Pt MEA is made, showing that although there's lower efficiency of the trimetallic catalyst, it is feasible to develop new Platinum–free MEA's. Background work involved ab–initio calculations using Materials StudioTM software to estimate catalyst structure and reaction capability to dissociate H2 molecule, as well as the synthesis of a trimetallic catalyst at the nanometric level. Chemical composition for the nanostructured anodic and cathodic trimetallic catalyst is determined by AES and compared to the AES pattern obtained for the bulk Pd70Co20Mo10.

Keywords: PEM fuel cell; Trimetallic catalyst; MEA; Potentiodynamic test; Auger spectra.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1]. A. Bieberle, The electrochemistry of Solid Oxide Fuel Cell Anodes: Experiments, modeling and simulations, Doctoral and habilitation Theses (Swiss Federal Institute of Technology, Zurich, 2000).         [ Links ]

[2]. K.D. Kreuer, Journal of membrane science, 185, 29 (2001).         [ Links ]

[3]. B.C.H. Steele, A. Heinzel, Nature, 414, 345 (2001).         [ Links ]

[4]. A. Bauen, D. Hart, Journal of power sources, 86, 482 (2000).         [ Links ]

[5]. G. Mackerron, Journal of power sources, 86, 28 (2000).         [ Links ]

[6]. G. Cacciola, V. Antonucci, S. Freni, Journal of power sources, 100, 67 (2001).         [ Links ]

[7]. J. Bockris, International journal of hydrogen energy, 27, 731 (2002).         [ Links ]

[8]. J.M. Ogden, M. Steinbugler, T. Kreutz, Journal of power sources, 79, 143 (1999).         [ Links ]

[9]. S. Ahmed, M. Krumpelt, International journal of hydrogen energy, 26, 291 (2001).         [ Links ]

[10]. M.L. Perry, T.F. Fuller, Journal of the electrochemical society, 149, S59 (2002).         [ Links ]

[11]. M. Mathias, J. Roth, J. Fleming, W. Lehnert, Chapter 46: diffusion media for PEM fuel cells, Handbook of fuel cells–fundamentals, technology and applications, Vol. 3: fuel cells technology and applications, John Wiley and sons ltd. (New York, USA, 2003).         [ Links ]

[12]. P. Costamagna, C. Yang, A.B. Bocarsly, S. Srinivasan, Electrochimica acta, 47, 1023 (2002).         [ Links ]

[13]. F.M. Vichi, M.T. Colomer, M.A. Anderson, Electrochemical and solid–state letters, 2 (7), 313 (1999).         [ Links ]

[14]. W. Cui, J. Kerres, G. Eigenberger, Separation and purification technology, 14, 145 (1998).         [ Links ]

[15]. P. Genova–Dimitrova, B. Barallie, D. Foscallo, C. Poinsignon, J.Y. Sánchez, Journal of membrane science, 185, 59 (2001).         [ Links ]

[16]. S. Gamburzev, A.J. Appleby, Journal of power sources, 107, 5 (2002).         [ Links ]

[17]. N. Jia, M.C. Lefevre, J. Halfyard, Z. Qi, P.G. Pickup, Electrochemical and solid–state letters, 3, 529 (2000).         [ Links ]

[18]. J. Kerres, A. Ullrich, F. Meier, T. Haring, Solid state ionics, 125, 243 (1999).         [ Links ]

[19]. T. Okada, Journal of electroanalytical chemistry, 465, 1 (1999).         [ Links ]

[20]. Shin S.–J., Lee J.–K., Ha H.–Y., Hong S.–A., Chun H.–S., Oh I.–H., Journal of power sources, 106, 146 (2002).         [ Links ]

[21]. E.B. Easton, P.G. Pickup, Electrochemical and solid–state letters, 3, 359 (2000).         [ Links ]

[22]. E.B. Easton, Z. Qi, A. Kaufman, P.G. Pickup, Electrochemical and solid–state letters, 3, A59 (2001).         [ Links ]

[23]. X. Wang, I.–M. Hsing, Electrochimica acta, 47, 2981 (2002).         [ Links ]

[24]. G. Maggio, V. Recupero, L. Pino, Journal of power sources, 101, 275 (2001).         [ Links ]

[25]. L. Pisani, G. Murgia, M. Valentini, B. D'aguanno, Journal of the electrochemical society, 149 , A898 (2002).         [ Links ]

[26]. J.S. Yi, T.V. Nguyen, Journal of the electrochemical society, 146, 38 (1999).         [ Links ]

[27]. B. Andreaus, A.J. McEvoy, G.G. Scherer, Electrochimica acta, 47, 2223 (2002).         [ Links ]

[28]. A.A. Kulikovsky, Electrochemistry communications, 4, 527 (2002).         [ Links ]

[29]. Baldauf M., Preidel W., Journal of applied electrochemistry, 31, 781 (2001).         [ Links ]

[30]. M.C. Lefevre, R.B. Martin, P.G. Pickup, Electrochemical and solid–state letters, 2, 259 (2001).         [ Links ]

[31]. M.S. Loffler, B. Gross, H. Natter, R. Hempelmann, T. Krajewski, J. Divisek, Physical chemistry & chemical physics, 3, 333 (2001).         [ Links ]

[32]. Y. Zhang, C. Erkey, Industrial and Engineering Chemistry Research, 44, 5312 (2005).         [ Links ]

[33]. N.P. Subramanian, S.P. Kumaraguru, H. Colon–Mercado, H. Kim, B.N. Popov, T. Black, D.A. Chen, Journal of Power Sources, 157, 56 (2006).         [ Links ]

[34]. H. Kim, B.N. Popov, Electrochemical and Solid–state Letters, 7, A71 (2004).         [ Links ]

[35]. V. Raghuveer, A. Manthiram, A.J. Bard, Journal of physical chemistry B, 109, 22909 (2005).         [ Links ]

[36]. U.B. Suryavanshi, C.H. Bhosale, Journal of Alloys and Compounds, 476, 697 (2008).         [ Links ]

[37]. C. Coutanceau, S. Brimaud, C. Lamy, J.–M. Léger, L. Dubau, S. Rousseau, F. Vigier, Electrochimica Acta, 53, 6865 (2008)        [ Links ]

[38]. B. Moreno, E. Chinarro, J.C. Pérez, J.R. Jurado, Applied Catalysis B: Environmental, 76, 368 (2007).         [ Links ]

[39]. X. Zhang, F. Zhang, R.–F. Guan, K.–Y. Chan, Materials Research Bulletin, 42, 327 (2007).         [ Links ]

[40]. http://www.fuelcellstore.com/en/pc/viewPrd.asp7idcategory=52&idproduct=1103, (2010).         [ Links ]

[41]. A. Gross, Department of theoretical chemistry–university of Ulm, http://www.uni–ulm.de/theochem, (2007).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons