SciELO - Scientific Electronic Library Online

 
vol.19 número3Transición electrónica fundamental en pozos cuánticos GaN/InGaN/GaN con estructura de zincblenda índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Superficies y vacío

versión impresa ISSN 1665-3521

Superf. vacío vol.19 no.3 Ciudad de México sep. 2006

 

Polarization-sensitive optical properties of metallic and semiconducting nanowires

 

Harry E. Ruda, Alexander Shik

 

Centre for Advanced Nanotechnology, University of Toronto Toronto M5S 3E4, Canada

 

Recibido: 10 de febrero de 2006.
Aceptado: 25 de agosto de 2006.

 

Abstract

Polarization phenomena in the optical absorption and emission of metallic, semiconducting or composite nanowires and nanorods are considered theoretically. Most nanowire-based structures are characterized by a dramatic difference in dielectric constant ε between their material and environment. Due to image forces caused by such ε mismatch, coefficients of optical absorption and emission become essentially different for light polarized parallel or perpendicular to the nanowire axis. As a result, the intensity and spectra of absorption, luminescence, luminescence excitation, and photoconductivity in single nanowires or arrays of parallel nanowires are strongly polarization-sensitive. In light-emitting nanowire core-shell structures, the re-distribution of a.c. electric field caused by the image forces may result in essential enhancing of core luminescence in frequency regions corresponding to luminescence from the semiconducting core or when the frequency of optical excitation coincides to the frequency of the plasmon resonance in the metallic shell. In random nanowire arrays, the effects described above may result in ''polarization memory'', where polarization of luminescence is determined by the polarization of the exciting light. Recent experimental data on ''polarization memory'' in CdSe/ZnS nanorods are presented.

Keywords: Manowires; Optical properties; Semiconductor.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

References

[1] X. Duan, C.M. Lieber, Adv. Mater. 12, 298 (2000)        [ Links ]

[2] X. Mei, M. Blumin, M. Sun, D. Kim, Z.H. Wu, H.E. Ruda, Q.X. Guo, Appl. Phys. Lett. 82, 967 (2003).         [ Links ]

[3] L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Nature 420, 57 (2002).         [ Links ]

[4] H.-J. Choi, J.C. Johnson, R. He, S.-K. Lee, F. Kim, P.Pauzauskie, J. Goldberger, R.J. Saykally, P. Yang, J. Phys. Chem. B 107, 8721 (2003).         [ Links ]

[5] L.D. Landau, E.M. Lifshits, Electrodynamics of Continuous Media (Pergamon, New York, 1984).         [ Links ]

[6] P.C. Sercel, K.J. Vahala,Appl. Phys. Lett. 57, 545 (1990).         [ Links ]

[7] C.R. McIntyre, L.J. Sham, Phys. Rev. B 45, 9443 (1992).         [ Links ]

[8] J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Science 293, 1455 (2001).         [ Links ]

[9] H.E. Ruda, A. Shik, Phys. Rev. B 72, 115308 (2005).         [ Links ]

[10] J. Qi, A.M. Belcher, J.M. White, Appl. Phys. Lett. 82, 2616 (2003).         [ Links ]

[11] Z. Fan, P.-C. Chang, J.G. Lu, E.C. Walter, R.M. Penner, C.- H. Lin, H.P. Lee, Appl. Phys. Lett. 85, 6128 (2004).         [ Links ]

[12] S. Han, W. Jin, D. Zhang, T. Tang, C. Li, X. Liu, Z. Liu, B. Lei, C. Zhou, Chem. Phys. Lett. 389, 176 (2004).         [ Links ]

[13] H.E. Ruda, A. Shik, J. Appl. Phys. 100, 024314 (2006).         [ Links ]

[14] V.V. Batygin, I.N. Toptygin, Problems in Electrodynamics (Academic Press, 1978).         [ Links ]

[15] J.A. Buck, Fundamentals of Optical Fibers (J. Wiley & Sons, New York, 2004).         [ Links ]

[16] U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995).         [ Links ]

[17] A.P. Alivisatos, Science 271, 933 (1996).         [ Links ]

[18] Y.Y. Yu, S.S. Chang, C.L. Lee, C.R.C. Wang, J. Phys. Chem. B 101, 661 (1997).         [ Links ]

[19] Weng Cho Chew, Waves and Fields in Inhomogeneous Media (Van Nostrand Reinhold, Amsterdam, 1990).         [ Links ]

[20] U. Philipose, H.E. Ruda, A. Shik, C.F. de Souza, P. Sun, Proc. SPIE 5971, 597116 (2005).         [ Links ]

[21] N.E. Hsu, W.K. Hung, Y.F. Chen, J. Appl. Phys. 96, 4671 (2004).         [ Links ]

[22] P. Lavallard, R.A. Suris, Solid State Comm. 95, 267 (1995).         [ Links ]

[23] D. Kovalev, M. Ben Chorin, J. Diener, F. Koch, Al.L. Efros, M. Rosen, N.A. Gippius, S.G. Tikhodeev, Appl. Phys. Lett. 67, 1585 (1995).         [ Links ]

[24] E. Kravtsova, U. Krull, S. Musikhin, H.E. Ruda, A. Shik, Appl. Phys. Lett. (in press).         [ Links ]

[25] L. Li, J. Hu, W. Yang, A.P. Alivisatos, Nano Lett. 1, 349 (2001).         [ Links ]

[26] J. Hu, L.-S. Li, W. Yang, L. Manna, L.-W. Wang, A. P. Alivisatos, Science 292, 2060 (2001).         [ Links ]

[27] J. Li, L. Wang, Nano Lett. 3, 101 (2003).         [ Links ]

[28] N. Le Thomas, E. Herz, O. Schõps, U. Woggon, M.V. Artemyev, Phys. Rev. Lett. 94, 016803 (2005).         [ Links ]

[29] A.E. Neeves, M.H. Birnboim, J. Opt. Soc. Am. B 6, 787 (1989).         [ Links ]

[30] H.E. Ruda, A. Shik, Phys. Rev. B 71, 245328 (2005).         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons