SciELO - Scientific Electronic Library Online

 
vol.14 número3Estudios estructurales y de dispersión de raman de nanocristales de ZnO-Cu crecidos por spray pirólisisEstudio de adsorción competitiva de cobre y zinc en solución acuosa utilizando Q/PVA/EGDE índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.3 México sep./dic. 2015

 

Materiales

 

Influencia de los defectos puntuales sobre las propiedades estructurales y electrónicas de nanotubos de BN funcionalizados con quitosano

 

Influence of the point defects on the structural and electronic properties of BN nanotubes functionalized with chitosan

 

A. Rodríguez-Juárez1,2, H. Hernández-Cocoletzi3, E. Chigo-Anota3*

 

1 Instituto Politécnico Nacional-UPIITA, Av. Instituto Politécnico Nacional 2580. Barrio Laguna Ticomán, 07340. México D.F.

2 Instituto Tecnológico Superior de Tlaxco, Predio Cristo Rey Ex Hacienda de Xalostoc s/n Carretera Apizaco Tlaxco Km. 16.8 C.P.90250 Tlaxco Tlaxcala, México.

3 Benemérita Universidad Autónoma de Puebla-Facultad de Ingeniería Química, Ciudad Universitaria, San Manuel, Puebla, Código Postal 72570, México.* Autor para la correspondencia. E-mail: ernesto.chigo@correo.buap.mx

 

Recibido 1 de Septiembre, 2014;
Aceptado 22 de Octubre, 2015.

 

Resumen

Se realizan cálculos de primeros principios para estudiar nanotubos de nitruro de boro (BNNTs) armchair (5,5) y zig-zag (5,0) funcionalizados con quitosano. Se considera la influencia de los defectos atómicos mediante mono y di-vacancias así como el dopaje sustitucional con átomos de carbono. Se muestra que la aproximación de la densidad local en la teoría de los funcionales de la densidad es apropiada para describir estos sistemas. Los nanotubos de nitruro de boro armchair con divacancias, originalmente semiconductores, evolucionan a sistemas semimetálicos ante la presencia del quitosano, en los demás casos su carácter semiconductor se mantiene. Los nanotubos zig-zag son semimetálicos. La alta polaridad y la buena distribución de su carga permiten predecir su solubilidad y su posible dispersión en sistemas acuosos.

Palabras clave: nanotubos de BN, defectos puntuales, quitosano, teoría DFT.

 

Abstract

First-principles calculations to study (5,5) armchair and (5,0) zig-zag boron nitride nanotubes (BNNTs) functionalized with chitosan are done. The influence of point defects such as mono and di-vacancies as well as the substitutional doping with carbon atoms are also considered. It is shown that the local density approximation within the density functional theory is appropriate to describe these systems. The armchair BNNT with di-vacancies, originally semiconductors, evolve to semimetal in the presence of chitosan; in other cases its semiconductor character is maintained. Zig-zag nanotubes are semimetallic. The high polarity and 1he broad charge distribution predict its solubillty and its possible dispersion in aqueous systems.

Keywords: BN nanotubes, point defects, chitosan, DFT theory.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Agradecimientos

Se agradece a la Vicerrectoria de Investigación y Estudios de Posgrado de la Benemérita Universidad Autónoma de Puebla el apoyo otorgado (proyecto: CHAE-ING15-G) y al Cuerpo Académico Ingeniería en Materiales de la Facultad de Ingeniería Química (BUAP-CA-177).

 

References

Ataca C, Aktürk E, Ciraci S y Ustunel H, (2008). High capacity hydrogen storage by metallized graphene. Applied Physics Letters 93, 043123-1 -043123-3.         [ Links ]

Bergnre A, Dolg M, Küchle W, Stoll H, Preus H (1993). Ab initio energy-adjusted pseudopotentials for elements of groups 13 through 17. Molecular Physics 80, 1431-1441.         [ Links ]

Blase X, De Vita A, Charlier J C y Car R (1998). Frustration effects and microscopic growth mechanisms for BN nanotubes. Physical Review Letters 80, 1666-1669.         [ Links ]

Cao F, Ren W, Ji YM, Zhao C (2009). The structural and electronic properties of amine-functionalized boron nitride nanotubes via ammonia plasmas: a density functional theory study. Nanotechnology 20, 145703-1-145703-7.         [ Links ]

Chigo Anota E, Hernández Cocoletzi H, Rubio Rosas E (2011). LDA approximation based analysis of the adsorption of O3 by boron nitride sheet. The European Physical Journal D 63, 271-273.         [ Links ]

Chigo Anota E, Hernández Rodríguez LD, Hernandez Cocoletzi G (2013). Influence of point defects on the adsorption of chitosan on graphene-like BN nanosheets. Graphene 1, 124-130.         [ Links ]

Chigo Anota E, Salazar Villanueva M (2009). Caracterización DFT de la adsorción de H20 por el cúmulo de nitruro de boro tipo grafeno. Superficies y Vacío 22, 23-28.         [ Links ]

Cobian M y Iñiguez J, (2008). Theoretical investigation of hydrogen storage in metal-intercalated graphitic materials. Journal of Physics: Condensed Matter 20, 285212-1285212-11.         [ Links ]

De Andres P L, Ramírez R y Vergés JA (2008). Strong covalent bonding between two graphene layers. Physical Review B 77, 045403-1045403-5.         [ Links ]

Delley B, (1990). An all-electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics 92, 508-517.         [ Links ]

Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen S T, RuoffRS (2007). Preparation and characterization of graphene oxide paper. Nature 448, 457-460.         [ Links ]

Dolg M, Weding U, Stoll H, Preuss H, (1987). Energy-adjusted a b i n i t i o pseudopotentials for the first row transition elements. The Journal of Chemical Physics 80, 866-872.         [ Links ]

Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS, (2009). Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane. Science 323, 610-613.         [ Links ]

Foresman JB, Frisch Æ (1996). Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., P. 70. 2da ed. USA.         [ Links ]

Galicia Hernández JM, Hernández Cocoletzi G, Chigo Anota E (2012). DFT studies of the phenol adsorption on boron nitride sheets. Journal of Molecular Modeling 18, 137-144.         [ Links ]

Geim AK (2012). Graphene prehistory. Physica Scripta T146, 014003-1 -014003-         [ Links ]4.

Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang Ch, Zhi C (2010). Boron Nitride Nanotubes and Nanosheets. ACS Nano 4, 2979-2993.         [ Links ]

Kang HS, (2006). Theoretical Study of Boron Nitride Nanotubes with Defects in Nitrogen-Rich Synthesis. Journal of Physical Chemistry B 110, 4621-4628.         [ Links ]

Khantha M, Cordero N A, Molina L M, Alonso , J. A, Girifalco L. A, (2004). Interaction of lithium with graphene: An ab initio study. Physical Review B 70, 125422-1-8.         [ Links ]

Kohn W, Becke AD, Parr RG, (1996). Density Functional Theory of Electronic Structure. Journal of Physical Chemistry 100, 12974-12980.         [ Links ]

Li B, Zhou L,Wu D, Peng H, Yan K, Zhou Y, Liu Z (2011). Photochemical Chlorination of Graphene. ACS Nano 5, 5957-5961.         [ Links ]

Li Y, Zhou Z, Golberg D, Bando Y, von Ragué Schleyer P, Chen Z (2008). Stone-Wales Defects in Single-Walled Boron Nitride Nanotubes: Formation Energies, Electronic Structures, and Reactivity. Journal of Physical Chemistry C 112, 1365-1370.         [ Links ]

Nair RR, Ren W, Jalil R, Riaz I, Kravets VG, Britnell L, Blake P, Schedin F, Mayorov AS, Yuan S, Katsnelson MI, ChengHM, Strupinski W, Bulusheva LG, Okotrub AV, Grigorieva IV, GrigorenkoAN, Novoselov KS, Geim AK (2010). Fluorographene: a two-dimensional counterpart of Teflon. Small 6, 2877-2884.         [ Links ]

Noorizadeh S, ShakerzadehE (2012). Formaldehyde adsorption on pristine, Al-doped and mono-vacancy defected boron nitride nanosheets: A first principles study. Computational Materials Science 56, 122-130.         [ Links ]

Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004). Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666-669.         [ Links ]

Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 102, 10451-10453.         [ Links ]

Perdew JP, Wang Y, (1992). Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B 45, 13244-13249.         [ Links ]

Rodríguez Juárez A, Chigo Anota E, Hernández Cocoletzi H, Flores Rivero A (2013). Adsorption of chitosan on BN nanotubes: A DFT investigation. Applied Surface Science 268, 259-264.         [ Links ]

Schmidt TM, Baierle RJ, Piquini P, Fazzio A (2003). Theoretical study of native defects in BN nanotubes. Physical Review B 67, 113407-11134074.         [ Links ]

Sofo JO, Chaudhari AS, Barber GD (2007). Graphane: A two-dimensional hydrocarbon. Physical Review B 75, 153401-153405.         [ Links ]

Tiano AL, Parka C, Lee JW, Luong HH, Gibbons LJ, Chua SH, Applin SI, Gnoffo P, Lowther S, Kim HJ, Danehy PM, Inman JA, Jones S B, Kang J H, Sauti G, Thibeault S A, Yamakov V, Wise E, Sue J, Fay C C (2014). Boron nitride nanotube: synthesis and applications. Published in SPIE Proceedings 9060, 906006.         [ Links ]

Wang W L, Kaxiras E (2010). Graphene hydrate: theoretical prediction of a new insulating form of graphene. New Journal of Physics 12, 1250121-1250127.         [ Links ]

Wu J, Yin L (2011). Platinum Nanoparticle Modified Polyaniline-Functionalized Boron Nitride Nanotubes for Amperometric Glucose Enzyme Biosensor. ACS Applied Materials Interfaces 3, 4354-4362.         [ Links ]

Yaya A, Ewels C P, Suarez Martinez I, Wagner Ph, Lefrant S, Okotrub A, Bulusheva L, Briddon PR (2011). Bromination of graphene and graphite. Physical Review B 83, 045411-045416        [ Links ]

Zhi Ch, Bando Y, Tang Ch, Golberg D (2010). Boron nitride nanotubes. Materials Science and Engineering: R 70, 92-111.         [ Links ]

Zobelli A, Ewels CP, Gloter A, Seifert G, Stephan O, Csillag Colliex C (2006). Defective Structure of BN Nanotubes: From Single Vacancies to Dislocation Lines. Nano Letters 6, 1955-1960.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons