SciELO - Scientific Electronic Library Online

 
vol.14 número3Transformación de trans-Anetol usando el hogo fitopatogénico Colletotrichum acutatum como biocatalizadorEfecto del Cr y Pb en la actividad de enzimas antioxidantes de un cultivo de células en suspensión de Jatropha curcas índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.3 México sep./dic. 2015

 

Biotecnología

 

Stability evaluation of β-Carotene nanoemulsions prepared by homogenization-emulsification process using stearic acid as oil phase

 

Evaluación de la estabilidad de nanoemulsiones de β -Caroteno preparadas por un método de homogeneización -Emulsificación empleando ácido esteárico como fase oleosa

 

G.A. Flores-Miranda, G. Valencia del Toro y J. Yáñez-Fernández*

 

Laboratorio de Biotecnología Alimentaria, Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, Av. Acueducto de Guadalupe s/n, La Laguna Ticomán, Gustavo A. Madero, 07340, Ciudad de México, D.F. * Corresponding author. E-mail: jyanezfe@ipn.mx, jyanezfe.ipn@gmail.com Phone: +52 57-29-60-00, Ext.56477.

 

Received November 21, 2014;
Accepted September 20, 2015.

 

Abstract

The effect of processing parameters (homogenization time, stirring speed and oil:water ratio) of y β-carotene nanoemulsions (stearic acid as oil phase) was studied via a central composite design (CCD) by response surface methodology (RSM). Particle size and nanoemulsions stability (β-carotene concentration, color and antioxidant activity) stored for 21 days at 25 and 4 °C were selected as response variables. Maximum particle size obtained was 1689.0 nm and minimum particle size was 418.8 nm, which a second order model were adjusted with R2 values of 0.766 and 0.933 at 25 and 4 °C, respectively. The particle size was affected directly by the homogenization time and inversily proportional to stirring speed and oil:water ratio. Parameters as β-carotene concentration and antioxidant activity showed a gradual decrease during storage, showing a great stability those that were stored at 4 °C. The optimal conditions to produce β-carotene nanoemulsions with minimum particle size were found at 25 °C for homogenization time 5.99 min, 5287 rpm and an oil: water ratio of 0.8:99.2; at 4 °C homogenization time 5.99 min, 8002 rpm and 0.62:99 oil:water ratio.

Keywords: β-carotene, stearic acid, central composite design, emulsification-homogenization, nanoemulsion.

 

Resumen

Se evaluó el efecto de los parámetros de procesamiento (tiempo de homogeneización, velocidad de agitación y relación aceite:agua) de nanoemulsión es de β-caroteno (ácido esteárico como fase oleosa) por medio de un diseño central compuesto (DCC), empleando la metodología de superficie de respuesta (MSR). El tamaño de partícula y la estabilidad de las nanoemulsiones (concentración de β-caroteno, color y actividad antioxidante) almacenadas durante 21 días a 25 y 4 °C fueron seleccionadas como variables respuesta. El tamaño de partícula máximo obtenido fue de 1689.0 nm y mínimo de 418.8 nm, los cuales se ajustaron a un modelo de segundo orden con valores de R2 de 0.766 y 0.933 para 25 y 4 °C, respectivamente. El tamaño de partícula fue afectado directamente por el tiempo de homogeneización e inversamente proporcional a la velocidad de agitación y la relación aceite:agua, mientras que los parámetros de estabilidad como color y actividad antioxidante presentaron una disminución gradual durante el almacenamiento, mostrando una mayor estabilidad aquellas que fueron almacenadas a 4 °C. Las condiciones optimas estimadas para elaborar nanoemulsiones de β-caroteno minimizando el tamaño de partícula fueron para 25 °C tiempo homogeneización de 5.99 min, 5287 rpm y una relación aceite:agua de 0.8:99.2; para 4 °C el tiempo de homogeneización de 5.99 min, 8002 rpm y una relación aceite:agua de 0.62: 99.38.

Palabras clave: β-caroteno, ácido esteárico, diseño central compuesto, emulsificación-homogenización, nanoemulsión.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The author G.A. Flores-Miranda acknowledge the financial support by Instituto Politécnico Nacional-México (SIP-20150178) and CONACyT-México (296035) for the scholarship on PhD studies.

 

References

Bhosale, R.R., Osmani, R.A., Ghodake, P.P., Shaikh, S.M. and Chavan, S.R. (2014). Nanoemulsion: A review on novel profusion in advanced drug delivery. Indian Journal of Pharmaceutical and Biological Research 2, 122-127.         [ Links ]

Burri, B.J. (1997). Beta-carotene and human health: A review of current research. Nutrition Research 17, 547-580.         [ Links ]

Bustos, G.C., Yáñez, F.J. and Barragán, H.B. (2013). Thermal and pH stability of spray-dried encapsulated astaxanthin oleoresin from Haematococcus pluvialis using several encapsulation wall materials. Food Research International 54, 641-649.         [ Links ]

Chakraborty, P., Dey, S., Parcha, V., Bhattacharya, S. and Ghosh, A. (2013). Design expert supported mathematical optimization and predictability study of buccoadhesive pharmaceutical wafers of loratadine. BioMed Research International, 1-12.

Das, S. and Chaudhury, A. (2011). Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. American Association of Pharmaceutical Scientists 12, 62-76.         [ Links ]

Deming, D.M. and Erdman, J.W. (1999). Mammalian carotenoid absorption and metabolism. Pure and Applied Chemistry 71, 2213-2223.         [ Links ]

Dzul, C.J., Lobato, C C., Pérez, O.J., Álvarez, R.J. and Vernon, C.E. (2013). Stability of water in oil in water multiple emulsions: Influence of the interfacial properties of milk fat globule membrane. Revista Mexicana de Ingeniería Química 12, 425-436.         [ Links ]

Ezhilarasi, P.N., Karthik, P., Chhanwal, N. and Anandharamakrishnan, C. (2013) Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technology 6, 628-647.         [ Links ]

Fathi, M., Mozafari, M.R. and Mohebbi, M. (2012). Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in Food Science & Technology 23, 13-27.         [ Links ]

Gaziano, J.M., Manson, J.E., Buring, J.E. and Hennekens, C.H. (1992). Dietary antioxidants and cardiovascular disease. Annals of the New York Academy of Sciences 669, 249-258.         [ Links ]

Ghosh, V., Mukherje, A. and Chandrasekaran, N. (2013). Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrasonics Sonochemistry 20, 338-344.         [ Links ]

Gupta, S.S. and Ghosh, M. (2012). In vitro study of anti-oxidative effects of β-carotene and α-lipoic acid for nanocapsulated lipids. Food Science and Technology 49, 131-138.         [ Links ]

Hao, J., Wang, F., Wang, X., Zhang, D., Bi, Y., Gao, Y., Zhao, X. and Zhang, Q. (2012). Development and optimization of baicalin-loaded solid lipid nanoparticles prepared by coacervation method using central composite design. European Journal Pharmaceutical Sciences 47, 497-505.         [ Links ]

Huang, L., Lu, Z., Yuan, Y., Lu, F. and Bie, X. (2006). Optimization of a protective medium for enhancing the viability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus based on response surface methodology. Journal of Industrial Microbiology and Biotechnology 33, 55-61.         [ Links ]

Jafari, S.M., Beheshti, P. and Assadpoor, E. (2012). Rheological behavior and stability of D-limonene emulsions made by a novel hydrocolloid (Angum gum) compared with Arabic gum. Journal of Food Engineering 109, 1-8.         [ Links ]

Jumaa, M., and Muller, B.W. (1998) The effect of oil components and homogenization conditions on the physicochemical properties and stability of parenteral fat emulsions. International Journal of Pharmaceutics 163, 81-89.         [ Links ]

Mapari, S.A., Meyer, A.S. and Thrane, U. (2006). Colorimetric characterization for comparative analysis of fungal pigments and natural foods colorants. Journal of Agricultural and Food Chemistry 54, 7027-7035.         [ Links ]

McClements, D.J. and Rao, J. (2011). Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Critical Reviews in Foods and Nutrition 51, 285-330.         [ Links ]

Montgomery, M. and Cook, A. (2009). Response Surface Methodology. Editorial John Wiley and Sons, New York.         [ Links ]

Moraru, C.I., Panchapakesan, C.P., Huang, Q., Takjistov, P., Liu, S. and Kokini, J.I. (2003). Nanotechnology: A new frontier in food science. Food Technology 57, 24-29.         [ Links ]

Mosqueira, V.C., Legrand, P., Pinto-Alphandary, H., Puisieux, F. and Barratt, G. (2000). Poly (D,L-lactide) nanocapsules prepared by a solvent displacement process: influence of the composition on physicochemical and structural properties. Journal of Pharmaceutical Sciences 89, 612-625.         [ Links ]

Nishino, H. (1997). Cancer prevention by natural carotenoids. Journal of Cellular Biochemistry 67, 86-91.         [ Links ]

Omenn, G.S., Goodman, G.E. and Thornquist, M.D. (1996). Effects of a combination of beta-carotene and vitamin A on lung cancer and cardiovascular disease. New England of Journal of Medicine 334, 1150-1155.         [ Links ]

Orset, S., Leach, G.C., Morais, R. and Young, A.J. (1999). Spray-drying of the microalga Dunaliella salina: Effects on beta-carotene content and isomer composition. Journal of Agricultural and Food Chemistry 47, 4782-4790.         [ Links ]

Qian, C., Decker, E.A., Xiao, H. and McClements, D.J. (2012). Physical and chemical stability of β-carotene-enriched nanoemulsions: Influence of pH, ionic strength, temperature, and emulsifier type. Food Chemistry 132, 1221-1229.         [ Links ]

Rahman, M.S. and Amri, K.A. (2011). Effect of outlier on coefficient of determination. International Journal of Education Research 6, 9-20.         [ Links ]

Rebolleda., S. Sanz, M.T., Benito, J.M., Beltrán, S., Escudero, I. and González, M.L. (2015). Formulation and characterisation of wheat bran oil-in-water nanoemulsions. Food Chemistry 167, 16-23.         [ Links ]

Reyes, P. and Di Scipo, S. (2012). Caracterización físico-química de emulsiones de aceite de maíz en agua. Revista de la Facultad de Ingeniería U.C.V. 27, 56-59.         [ Links ]

Ribeiro, H.S. and Cruz, R.C. (2005). Biliquid foams containing carotenoids. Engineering In Life Sciences 5, 84-88.         [ Links ]

Rodríguez, B.J., Serna, J.J., Uribe, B.M., Klotz, B. and Quintanilla, C.X. (2014). Application of response surface methodology to evaluate the effect of the concentration of sugar and commercials starts on the fermentation kinetics of yogurt. Revista Mexicana de Ingeniería Química 13, 213-225.         [ Links ]

Rodríguez, H.M., Pedroza, I.R., Prado, B.L., Beristain, C.I. and Vernon, C.E. (2004). Microencapsulation by spray drying of multiple emulsions containing carotenoids. Journal of Food Science 69, 351-359.         [ Links ]

Salvia T.L., Qian, C., Martín, B.O. and McClements, D.J. (2013). Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Food Chemistry 141, 1472-1480.         [ Links ]

Sarmiento, C.C., Monroy, V.A., Alamilla, B.L., Hernández, S.H., Cornejo, M.M., Téllez, M.D., Jiménez, M.C. and Gutiérrez, L.G. (2014). Micromorphometric characteristics of α-tocopherol emulsions obtained by microfluidization. Revista Mexicana de Ingeniería Química 13, 201-212.         [ Links ]

Silva, H.D., Cerqueira, M.A., Souza, W.S., Ribeiro, C., Avides, M.C., Quintas, M.A., Coimbra, J.S. Carneiro-da-Cunha, M. and Vicente, A.A. (2011). Nanoemulsions of β-carotene using high-energy emulsification-evaporation technique. Journal of Food Engineering 102, 130-135.         [ Links ]

Talegaonkar, S., Tariq, M. and Alabood, R.M. (2011). Design and development of o/w nanoemulsion for the transdermal delivery of ondansetron. Bulletin of Pharmaceutical Research 1, 18-30.         [ Links ]

Tan, C. and Nakajima, M. (2005a). β-carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chemistry 92, 661-671.         [ Links ]

Tan, C. and Nakajima, M. (2005b). Effect of polyglycerol esters of fatty acids on physicochemical properties and stability of β-carotene nanodispersions prepared by emulsification/evaporation method. Journal of the Science Food and Agriculture 85, 121-126.         [ Links ]

Tang, S.Y., Manickam, S., Wei, T.K. and Nashiru, B. (2012) Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrasonics Sonochemistry 19, 330-345.         [ Links ]

Triplet II, M. and Rathman, J. (2009). Optimization of β-carotene loaded solid lipid nanoparticles preparation using a high shear homogenization technique. Journal of Nanoparticle Research 11, 601-614.         [ Links ]

Verma, S., Lan, Y., Gokhale, R. and Burgess, D.J. (2009). Quality by design approach to understand the process of nanosuspension preparation. International Journal of Pharmaceutics 377, 185-198.         [ Links ]

Xynos, N., Papaefstathiou, G., Gikas, E., Argyropoulou, A., Aligiannis, N. and Skaltsounis, A. (2014). Design optimization study of the extraction of olive leaves performed with pressurized liquid extraction using response surface methodology. Separation and Purification Technology 122, 323-330.         [ Links ]

Yin, L.J., Chu, B.S., Kobayashi, I. and Nakajima, M. (2009). Performance of selected emulsifiers and their combinations in the preparation of β-carotene nanodispersions. Food Hydrocolloids 23, 1617-1622.         [ Links ]

Yuan, Y., Gao, Y., Mao, L. and Zhao, J. (2008a). Optimisation of conditions for the preparation of β-carotene nanoemulsions using response surface methodology. Food Chemistry 107, 1300-1306.         [ Links ]

Yuan, Y., Gao, Y., Zhao, J. and Mao, L. (2008b). Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International 41, 61-68.         [ Links ]

Zainol, S., Basri, M., Basri, H.B., Shamsuddin, A.F., Abdul-Gani, A.A., Karjiban, R.A. and Adbul-Malek, E.(2012). Formulation optimization of palm-based nanoemulsion system containing Levodopa. International Journal of Molecular Sciences 13, 13049-13064.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons