SciELO - Scientific Electronic Library Online

 
vol.14 issue3Effect of temperature and PH environment on the hydrolysis of maguey fructans to obtain fructose syrupEnhancement of phenylethanoid glycosides biosynthesis in Castilleja tenuiflora Benth: Shoot cultures with cell wall oligosaccharides from Fusarium oxysporum f. sp. lycopersici Race 3 author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 n.3 Ciudad de México Sep./Dec. 2015

 

Biotecnología

 

Synthesis of α-L-Fucosidase in different strains of lactic acid bacteria

 

Síntesis de α-L-Fucosidasa en diferentes cepas de bacterias ácido lácticas

 

Y. Escamina-Lozano1, M. García-Garibay1, 2, A. López-Munguía-Canales3, L. Gómez-Ruiz1, G. Rodríguez-Serrano1, and A. Cruz -Guerrero1*

 

1 Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No. 186 Col. Vicentina, México D.F. C.P. 09340, México. * Corresponding author. E-mail: aec@xanum.uam.mx

2 Departamento de Ciencias de la Alimentación, Universidad Autónoma Metropolitana-Lerma, Av. Hidalgo Poniente 46, Col. La Estación, C.P. 52006, Lerma de Villada, Edo. de México, México.

3 Dpto. de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología UNAM, Av. Universidad No. 2001, Col. Chamilpa, C.P. 62210 Cuernavaca, Morelos, México.

 

Received June 3, 2015;
Accepted July 5, 2015.

 

Abstract

The ability of six lactic acid bacteria to produce α-L-fucosidase is reported here for the first time, opening a wide field of investigation into the metabolism and assimilation of human milk oligosaccharides by lactic acid bacteria. Lactobacillus casei IMAU60214, Lactobacillus casei Shirota, Lactobacillus rhamnosus GG, Lactobacillus rhamnosus KLDS, Lactobacillus helveticus IMAU70129 and Lactobacillus delbrueckii subsp. bulgaricus NCFB-2772 were all able to produce α-L-fucosidases. Growth kinetics and carbohydrate consumption meas urements indicated that the six strains were able to metabolise D-glucose and D-galactose as a carbon source; surprisingly, they did not assimilate L-fucose. However, α-L-fucosidase was a cell-associated enzyme and produced constitutively in different carbon sources. The highest cell-associated α-L-fucosidase activity was observed in L. rhamnosus GG (0.16 U mg-1).

Keywords: α-L-fucosidase, lactobacilli, fucose, human milk oligosaccharides.

 

Resumen

Este es el primer estudio que reporta las síntesis de α-L-fucosidasa en seis bacterias ácido lácticas, lo que abre un amplio campo de investigación sobre el metabolismo y la asimilación de los oligosacáridos de la leche humanos por parte de estos microorganismos. Lactobacillus casei IMAU60214, Lactobacillus casei Shirota, Lactobacillus rhamnosus GG, Lactobacillus rhamnosus KLDS, Lactobacillus helveticus IMAU70129 y Lactobacillus delbrueckii subsp. bulgaricus NCFB-2772 fueron capaces de producir α-L-fucosidasa. Las cinéticas de crecimiento y el consumo de carbohidratos indican que las seis cepas son capaces de metabolizar D-glucosa y D-galactosa como fuente de carbono; pero no asimilaron L-fucosa. Por otro lado, las α-L-fucosidasas sintetizadas son enzimas asociadas a la célula y se produjeron de manera constitutiva en diferentes fuentes de carbono. La mayor actividad enzimática se observó en L. rhamnosus GG (0.16 U mg-1).

Palabras clave: α-L-fucosidasa, lactobacilos, fucosa, oligosacáridos de leche humana.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

We gratefully acknowledge to the National Council for Science and Technology (CONACYT) of México for a graduate scholarship (234678) and financial support for this project (180438).

 

References

Ashida, H., Miyake, A., Kiyohara, M., Wada, J., Yoshida, E., Kumagai, H. and Katayama, T. (2009). Two distinct alpha-L-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 19, 1010-1017.         [ Links ]

Bode, L. (2009). Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 22, 1147-1162.         [ Links ]

Cruz-Guerrero, A., Hernández-Sánchez, H., Rodríguez-Serrano, G., Gómez-Ruiz, L., García-Garibay, M. and Figueroa-González, I. (2014). Commercial probiotic bacteria and prebiotic carbohydrates: a fundamental study on prebiotics uptake, antimicrobials production and inhibition of pathogens. Journal of the Science of Food and Agriculture 94, 2246-2252.         [ Links ]

Chaturvedi, P., Warren, C., Altaye, M., Morrow, A., Ruiz-Palacios, G., Pickering L. and Newburg, D. (2001). Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology 11, 365-372.         [ Links ]

Hickey, M.W., Hillier, J. and Jago, G. R. (1986). Transport and metabolism of lactose, glucose, and galactose in homofermentative lactobacilli. Applied and Environmental Microbiology 51, 825-831.         [ Links ]

Morita, H., Toh, H., Oshima, K., Murakami, M., Taylor, T., Igimi, S. and Hattori, M. (2009). Complete genome sequuence of the probiotic Lactobacillus rhamnosus ATCC 53103. Journal of Bacteriology 191, 7630-7631.         [ Links ]

Newburg, D. S. (2009). Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. Journal of Animal Science 87, 26-34.         [ Links ]

Pokusaeva, K., Fitzgerald, G. F. and Van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition 6, 285-306.         [ Links ]

Rodríguez-Díaz, J., Monedero, V. and Yebra, M. J. (2011). Utilization of natural fucosylated oligosaccharides by three novel alpha-L-fucosidases from a probiotic Lactobacillus casei strain. Applied and Environmental Microbiology 77, 703-705.         [ Links ]

Rodríguez-Díaz, J., Rubio, C, A. and Yebra, M. J. (2012). Lactobacillus casei ferments the N-acetylglucosamine moiety of fucosy 1 -α-1,3-N-acetylglucosamine and excretes L-fucose. Applied and Environmental Microbiology 78, 4613-4619.         [ Links ]

Schwab, C. and Ganzle, M. (2011). Lactic acid bacteria fermentation of human milk oligosaccharide components, human milk oligosaccharides and galactooligosaccharides. FEMS Microbiology Letters 315, 141-148.         [ Links ]

Sela, A. D. (2011). Bifidobacterial utilization of human milk oligosaccharides. International Journal of Food Microbiology 149, 58-64.         [ Links ]

Shoaf-Sweeney., K. D. and Hutkins, R. W. (2009). Adherence, anti-adherence, and oligosaccharides preventing pathogens from sticking to the host. Advances in Food and nutrition research 55, 101-161.         [ Links ]

Tsai, Y. K. and Lin, T. H. (2006). Sequence, organization, transcription and regulation of lactose and galactose operons in Lactobacillus rhamnosus TCELL-1. Journal of Applied Microbiology 100, 446-59.         [ Links ]

Ward, R. E, Niñonuevo, M., Mills, D., Lebrilla, C. B. and German, J. B. (2007). in vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Molecular Nutrition and Food Research 51, 1398-1405.         [ Links ]

Zourari, A., Accolas, J. P. and Desmazeaud, M. J. (1992). Metabolism and biochemical characteristics of yogurt bacteria. Le Lait 72, 1-34.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License