SciELO - Scientific Electronic Library Online

 
vol.14 número3Rastreo de compuestos fenólicos en la fabricación de películas comestibles a partir de cáscaras de naranja y toronjaCaracterización de nanopartículas de quitosano adicionadas con aceites escenciales: Efecto in vitro en Pectobacterium carotovorum índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.3 México sep./dic. 2015

 

Ingeniería de alimentos

 

Stabilization of phenolic compounds from Opuntia oligacantha Först by microencapsulation with agave SAP (aguamiel)

 

Estabilización de compuestos fenólicos de Opuntia oligacantha Först por microencapsulación con agave SAP (aguamiel)

 

C. Pérez-Alonso1, R.G. Campos-Montiel2, E. Morales-Luna2, A. Reyes-Munguía3, G. Aguirre-Álvarez2, D.J. Pimentel-González2,4*

 

1 Departamento de Ingeniería Química, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan esq. Paseo Colon s/n, CP 50120 Toluca, Estado de México, México.

2 Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, Av. Rancho Universitario S/N, Km. 1, CP 43600 Tulancingo, Hgo., México.

3 Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí. Av. Manuel Nava No. 6, Zona Universitaria, San Luis Potosí, SLP México, CP. 78290.

4 Departamento de Biotecnología, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Vicentina, México DF 09340, México. * Corresponding author. E-mail: dianajpg@gmail.com

 

Received December 8, 2014;
Accepted August 28, 2015.

 

Abstract

The aim of this research was to determine the stability of phenolic compounds from Opuntia oligacantha Först (xoconostle) by microencapsulation with able of biopolymers (maltodextrin and gum arabic) and agave sap (aguamiel) as a thermoprotector. The particle size distribution, morphology, stability during storage at different temperaturas and water activity of the microcapsules were determined. The results showed significant differences (P<0.05) among the microcapsules. Higher protection was found in the microcapsules containing aguamiel. The microcapsules had a spherical shape with an average diameter of 7.72 μm. It was observed that the microcapsules containing aguamiel had a minor change in colour independent of the drying temperature and preserved the phenolic compounds for more than 1467 days at a storage temperatura of 25 °C. These results suggest the application of microencapsulation with phenolic compounds from xoconostle for food products.

Keywords: biopolymers, xoconostle, stability, spray drying.

 

Resumen

En esta investigación se determinó la estabilidad de compuestos fenólicos de Opuntia oligacantha Forst (xoconostle) mediante la microencapsulación con una mezcla de biopolímeros (maltodextrina y goma arábiga) y agave sap (aguamiel) como termoprotector. A los microencapsulados secados por aspersión se les determine) distribución de tamaño de partícula, microscopía electrónica de barrido y estabilidad durante el almacenamiento a diferentes temperaturas y actividades de agua. Los resultados mostraron diferencias significativas (P<0.05) entre las microcápsulas encontrando mayor protección en las microcápsulas con aguamiel. Las microcápsulas con formas esféricas tuvieron un diámetro promedio de 7.72 μm. Se observó que las microcápsulas con aguamiel tuvieron el menor cambio de color independientemente de la temperatura de secado y preservan los compuestos fenólicos por más de 1467 días con temperaturas de almacenamiento de 25 °C. Estos resultados sugieren la aplicación de estos encapsulados con compuestos fenólicos del xoconostle en productos alimenticios.

Palabras clave: biopolímeros, xoconostle, estabilidad, secado por aspersión.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The authors thank the Consejo Nacional de Ciencia y Tecnología (CONACyT) through project CB-2012-01-183807 for supporting this work, Biol. Yolanda Hornelas Orozco de Uribe from Instituto de Ciencias del Mar y Limnología of UNAM for the micrographs; and PANIPLUS, S.A. for the samples of enzymes.

 

References

Alamilla-Beltrán, L., Chanona-Pérez, J.J., Jiménez-Aparicio, A.R., Gutiérrez-López, G.F. (2005). Description of morphological changes of particles along spray drying. Journal of Food Engineering 67, 179-184.         [ Links ]

A.O.A.C. (1995). Official methods of analysis of AOAC (16th Ed.). Arlington, VA: Association of Official Analytical Chemists, (pp. 12-14).         [ Links ]

Avaltroni, F., Bouquerand, P.E., Normand, V. (2004). Maltodextrin molecular weight distribution influence on the glass transition temperature and viscosity in aqueous solutions. Carbohydrate Polymers 58, 323-334.         [ Links ]

Carrillo-Navas, H., González-Rodea, D. A., Cruz-Olivares, J., Barrera-Pichardo, J.F., Román-Guerrero, A., Pérez-Alonso, C. (2011). Storage stability and physicochemical properties of passion fruit juice microcapsules by spray-drying. Revista Mexicana de Ingeniería Química 10, 421-430.         [ Links ]

Castañeda-Pérez, E., Osorio-Revilla, G. I., Gallardo-Velázquez, T., Proal-Nájera, J. B. (2013). Use of FTIR-HATR coupled to multivariate analysis to monitor the degradation of bioactive compounds during drying of red pepper. Revista Mexicana de Ingeniería Química 12, 193-204.         [ Links ]

Castellar, R., Obon, J. M., Alacid, M., Fernández-López, J. A. (2003). Color properties and stability of betacyanins from Opuntia fruits. Journal of Agricultural and Food Chemistry 51, 2772-2776.         [ Links ]

Cruz-Guerrero, A. E., Olvera, J. L., García-Garibay, M., Gómez-Ruiz, L. (2006). Inulinase-hyperproducing strains of Kluyveromyces sp. isolated from aguamiel (Agave sap) and pulque. World Journal of Microbiology and Biotechnology 22, 115-117.         [ Links ]

Desobry, S. A., Netto, F. M., Labuza, T. P. (1997). Comparison of Spray?d rying, Drum?drying and Freeze-drying for β?Carotene Encapsulation and Preservation. Journal of Food Science 62,1158-1162.         [ Links ]

Ersus, S., Yurdagel, U. (2007). Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. Journal of Food Engineering 80, 805-812.         [ Links ]

Estrada-Godina, A. R., Cruz-Guerrero, A. E., Lappe, P., Ulloa, M., García-Garibay, M., Gómez-Ruiz, L. (2001). Isolation and identification of killer yeasts from Agave sap (aguamiel) and pulque. World Journal of Microbiology and Biotechnology 17, 557-560.         [ Links ]

García-Gutiérrez, C., González-Maldonado, M.B., Ochoa-Martínez, L.A., Medrano-Roldan. (2004). Microencapsulación de jugo de cebada verde mediante secado por aspersión. Ciencia y Tecnología Alimentaria 4, 262-266.         [ Links ]

Guadarrama-Lezama, A.Y., Cruz-Olivares, J., Martínez-Vargas, S.L., Carrillo-Navas, H., Roman-Guerrero, A., Pérez-Alonso, C. (2014). Determination of the minimum integral entropy, water sorption and glass transition temperature to establishing critical storage conditions of beetroot juice microcapsules by spray drying. Revista Mexicana de Ingeniería Química 13, 405-416.         [ Links ]

Guzmán-Maldonado, S. H. Morales-Montelongo, A. L., Mondragón-Jacobo, C., Herrera-Hernández, G., Guevara-Lara, F., Reynoso-Camacho, R. (2010). Physicochemical, nutritional, and functional characterization of fruits xoconostle (Opuntia matudae) pears from central-México region. Journal of Food Science 25, C485-C492.         [ Links ]

Herbach, K. M., Stintzing, F. C., Carle, R. (2004). Impact of thermal treatment on color and pigment pattern of red beet (Beta vulgaris L.) preparations. Journal of Food Science 69,C491-C498.         [ Links ]

Jiménez-Aguilar, D. M., Ortega-Regules, A. E., Lozada-Ramírez, J. D., Pérez-Pérez, M. C. I., Vernon-Carter, E. J., Welti-Chanes, J. (2011). Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. Journal of Food Composition and Analysis 24, 889-894.         [ Links ]

Jiménez-Avalos, H.A., Ramos-Ramírez, E.G., Salazar-Montoya, J.A. (2005). Viscoelastic characterization of gum arabic and maize starch mixture using the Maxwell model. Carbohydrate Polymers 62, 11-18.         [ Links ]

Labuza, T. P., Schmidl, M. K. (1985). Accelerated shelf-life testing of foods. Food Technology 39, 57-62.         [ Links ]

Loret, C., Meunier, V., Frith, W.J., Fryer, P.J. (2004). Rheological characterization of the gelation behavior of maltodextrin aqueous solutions. Carbohydrate Polymers 57, 153-163.         [ Links ]

Morales, P., Ramírez-Moreno, E., Sánchez-Mata, M. D. C., Carvalho, A. M., Ferreira, I. C. (2012). Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia joconostle FAC Weber ex Diguet and Opuntia matudae Scheinvar) of high consumption in México. Food Research International 46, 279-285.         [ Links ]

Oakley, D.E. (1997). Produce uniform particles by spray drying. Chemical Engineering Progress 93, 48 -         [ Links ]54.

O'Hagan, P., Hasapidis, K., Coder, A., Helsing, H., Pokrajac, G. (2005). Particle size analysis of food powders. In: C. Onwulata (ed.), Encapsulated and Powdered Foods, Taylor & Francis, Food Science and Technology (pp. 215-245). New York: Marcel Dekker Inc.         [ Links ]

Osorio-Esquivel, O., Álvarez, V. B., Dorantes-Álvarez, L., Giusti, M. M. (2011). Phenolics, betacyanins and antioxidant activity in Opuntia joconostle fruits. Food Research International 44, 2160-2168.         [ Links ]

Pacheco-Palencia, L. A., Hawken, P., Talcott, S. T. (2007). Phytochemical, antioxidant and pigment stability of acai (Euterpe oleracea Mart.) as affected by clarification, ascorbic acid fortification and storage. Food Research International 40, 620-628.         [ Links ]

Pérez-Alonso, C., Báez-González, J. G., Beristain, C. I., Vernon-Carter, E. J., Vizcarra-Mendoza, M. G. (2003). Estimation of the activation energy of carbohydrate polymers blends as selection criteria for their use as wall material for spray-dried microcapsules. Carbohydrate Polymers 53, 197-203.         [ Links ]

Pimienta-Barrios, E., Méndez-Moran, L., Ramírez-Hernández, B. C., García de Alba-García, J. E., Domínguez-Arias, R. M. (2008). Effect of xoconostle (Opuntia joconostle Web.) fruit consumption on glucose and seric lipids. Agrociencia 42, 645-653.         [ Links ]

Pitalua, E., Jiménez, M., Vernon-Carter, E. J., Beristain, C. I. (2010). Antioxidative activity of microcapsules with beetroot juice using gum Arabic as wall material. Food and Bioproducts Processing 88, 253-258.         [ Links ]

Quek, S. Y., Chok, N. K., Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification 46, 386-392.         [ Links ]

Reineccius, G.A. (2004). The spray drying of food flavors. Drying Technology 22, 1289-1324.         [ Links ]

Reyes-Agüero, J. A., Aguirre R, J. R., Valiente-Banuet, A. (2006). Reproductive biology Opuntia: A review. Journal of Arid Environments 64, 549-585.         [ Links ]

Rodríguez-Hernández, G.R., González-García, R., Grajales-Lagunes, A. and Ruíz-Cabrera, M.A. (2005). Spray-drying of cactus pear juice (Opuntia streptacantha): Effect on the physicochemical properties of powder and reconstituted product. Drying Technology 23, 955-973.         [ Links ]

Rodríguez-Huezo, M. E., Durán-Lugo, R., Prado-Barragán, L. A., Cruz-Sosa, F., Lobato-Calleros, C., Álvarez-Ramírez, J., Vernon-Carter, E. J. (2007). Pre-selection of protective colloids for enhanced viability of Bifidobacterium bifidum following spray-drying and storage, and evaluation of aguamiel as thermoprotective prebiotic. Food Research International 40, 1299-1306.         [ Links ]

Rodríguez-Huezo, M. E., Estrada-Fernández, A. G., García-Almendárez, B. E., Ludena-Urquizo, F., Campos-Montiel, R. G., Pimentel-González, D. J. (2014). Viability of Lactobacillus plantarum entrapped in double emulsion during Oaxaca cheese manufacture, melting and simulated intestinal conditions. LWT-Food Science and Technology 59, 768-773.         [ Links ]

Rojas-Barquera, D.R., Narváez-Cuenca, E.C., Restrepo-Sánchez, L.P. (2008). Evaluación del contenido de vitamina C, fenoles totales y actividad antioxidante en pulpa de guayaba (Psidium guajava L.) de las variedades pera, regional roja y regional blanca. Memorias de Red- Alfa Lagrotech, 49-60.         [ Links ]

Singleton, V. L., Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16, 144-158.         [ Links ]

Tesoriere, L., Butera, D., Allegra, M., Fazzari, M., Livrea, M. A. (2005). Distribution of betalain pigments in red blood cells after consumption of cactus pear fruits and increased resistance of the cells to ex vivo induced oxidative hemolysis in humans. Journal of Agricultural and Food Chemistry 53, 1266-1270.         [ Links ]

Tonon, R. V., Brabet, C., Hubinger, M. D. (2010). Anthocyanin stability and antioxidant activity of spray-dried acai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International 43, 907-914.         [ Links ]

Tonon, R. V., Freitas, S. S., Hubinger, M. D. (2011). Spray drying of acai (Euterpe oleraceae mart.) juice: Effect of inlet air temperature and type of carrier agent. Journal of Food Processing and Preservation 35, 691-700.         [ Links ]

Zakharova, N. S., Petrova, T. A. (1998). Relationships between the structure and antioxidant activity of certain betalains. Applied Biochemistry and Microbiology 34, 182-185.         [ Links ]

Zavaleta-Beckler, P., Olivares-Orozco, L. J., Montiel-Salero, D., Chimal-Hernández, A., Scheinvar, L. (2001). Organic fertilization in sour prickly pear (Opuntia joconostle and O. matudae). Agrociencia.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons