SciELO - Scientific Electronic Library Online

 
vol.14 número3Estabilización de compuestos fenólicos de Opuntia oligacantha Först por microencapsulación con agave SAP (aguamiel) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ingeniería química

versión impresa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.3 México sep./dic. 2015

 

Ingeniería de alimentos

 

Tracing phenolic compounds through manufacturing of edible films from orange and grapefruit peels

 

Rastreo de compuestos fenólicos en la fabricación de películas comestibles a partir de cáscaras de naranja y toronja

 

J.G. Hernández-Carrillo, A. Valdez-Fragoso, J. Welti-Chanes, H. Mújica-Paz*

 

Escuela de Ciencias e Ingeniería, Tecnológico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey Nuevo León, 64849, México. * Corresponding author. E-mail: h.mujica@itesm.mx Tel.: +52 (81)83 58 14 00 ext. 4854.

 

Received March 24, 2015;
Accepted July 5, 2015.

 

Abstract

Edible films naturally rich in phenolic compounds were prepared from orange and grapefruit peels. Free and total polyphenols were determined by Folin-Ciocalteau method and flavonoids were identified and quantified by HPLC in the manufacturing processes of films. Films from grapefruit and orange peel had 24.95 and 28.18 mg GAE/g (Gallic Acid Equivalents/g), respectively, retaining more than 50% of total phenolics from the raw material. Hesperidin (33.39 mg/g) was the main flavonoid in orange peel based films and naringin (31.42 mg/g) in grapefruit peel films. Recoveries of the identified flavonoids in films were in the range of 31-60%. Residues, mainly those from orange peel process, retained important fraction of phenolics. Edible films with high levels of polyphenols were manufactured from orange and grapefruit peel without the addition of external phenolics extracts.

Keywords: orange peel, grapefruit peel, edible films, phenolic compounds, flavonoids.

 

Resumen

Se fabricaron películas biodegradables con alto contenido de compuestos fenólicos a partir de cáscaras de naranja y toronja. En el proceso de producción de las películas, se determinaron los polifenoles libres y totales por el método de Folin-Ciocalteau y los flavonoides se identificaron y cuantificaron por HPLC. Las películas de cáscara de naranja y toronja tuvieron 24.95 y 28.18 mg EAG/g (Equivalentes de Acido Gálico/g), respectivamente, con una retención de más del 50% de los fenólicos totales de las materias primas. El principal flavonoide en las películas a base de cáscara de naranja fue la hesperidina (33.39 mg/g) y, la naringina en las de cáscara de toronja. La recuperación de los flavonoides identificados en las películas estuvo entre 31-60%. Los residuos del proceso, principalmente los del proceso de cáscara de naranja, retuvieron una fracción importante de fenólicos. Se fabricaron películas comestibles con altos niveles de polifenoles a partir de cáscaras de naranja y toronja sin la adición de extractos externos de fenólicos.

Palabras clave: cáscara de naranja, cáscara de toronja, películas biodegradables, compuestos fenólicos, flavonoides.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

The authors thank the financial support from CONACYT-México (Grant 223775) and Tecnológico de Monterrey. J.G. Hernández-Carrillo is grateful to CONACYT for the doctoral scholarship. Special thanks to Z. J. Escobedo-Avellaneda for her advices in laboratory techniques.

 

References

Aluja, M., Bigurra, E., Birke, A., Greany, P., and McDonald, R. (2011). Delaying senescence of 'Ruby Red' grapefruit and 'Valencia' oranges by gibberellic acid applications. Revista Mexicana de Ciencias Agrícolas 2, 41-55.         [ Links ]

Alves, V.D., Costa, N., and Coelhoso, I.M. (2010). Barrier properties of biodegradable composite films based on kappa-carrageenan/pectin blends and mica flakes. Carbohydrate Polymers 79, 269-276.         [ Links ]

Bagliotti Meneguin, A., Stringhetti Ferreira Cury, B., and Evangelista, R.C. (2014). Films from resistant starch-pectin dispersions intended for colonic drug delivery. Carbohydrate Polymers 99, 140-149.         [ Links ]

Bierhalz, A.C.K., da Silva, M.A., and Kieckbusch, T.G. (2012). Natamycin release from alginate/pectin films for food packaging applications. Journal of Food Engineering 110,18-25.         [ Links ]

Blanco-Pascual, N., Gómez-Guillén, M.C., and Montero, M.P. (2014). Integral Mastocarpus stellatus use for antioxidant edible film development. Food Hydrocolloids 40, 128-137.         [ Links ]

Bonilla, J., Atarés, L., Vargas, M., and Chiralt, A. (2012). Edible films and coatings to prevent the detrimental effect of oxygen on food quality: Possibilities and limitations. Journal of Food Engineering 110, 208-213.         [ Links ]

Cian, R.E., Salgado, P.R., Drago, S.R., González, R.J., and Mauri, A.N. (2014). Development of naturally activated edible films with antioxidant properties prepared from red seaweed Porphyra columbina biopolymers. Food Chemistry 146, 6-14.         [ Links ]

Escobedo-Avellaneda, Z., Gutiérrez-Uribe, J., Valdez-Fragoso, A., Torres, J.A., and Welti-Chanes, J., (2014). Phytochemicals and antioxidant activity of juice, flavedo, albedo and comminuted orange. Journal of Functional Foods 6, 470-481.         [ Links ]

Galus, S., and Lenart, A. (2013). Development and characterization of composite edible films based on sodium alginate and pectin. Journal of Food Engineering 115, 459-465.         [ Links ]

Gorinstein, S., Martín-Belloso, O., Park, Y.-S., Haruenkit, R., Lojek, A., Cíz, M., Caspi, A., Libman, I., and Trakhtenberg, S. (2001). Comparison of some biochemical characteristics of different citrus fruits. Food Chemistry 74,309-315.         [ Links ]

Goulas, V., and Manganaris, G.A. (2012). Exploring the phytochemical content and the antioxidant potential Citrusfruits grown in Cyprus. Food Chemistry 131, 39-47.         [ Links ]

Guimarães, R., Barros, L., Barreira, J.C.M., Sousa, M.J., Carvalho, A.M., and Ferreira, I.C.F.R. (2010). Targeting excessive free radicals with peels and juices of citrus fruits: Grapefruit, lemon, lime and orange. Food and Chemical Toxicology 48, 99-106.         [ Links ]

Gómez-Estaca, J., Giménez, B., Montero, P., and Gómez-Guillén, M.C. (2009). Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelatin. Journal of Food Engineering 92, 78-85.         [ Links ]

Hernández-Ochoa, L., Gonzáles-Gonzáles, A., Gutiérrez-Mendez, N., Muñoz-Castellanos, L. N., and Quintero-Ramos, A. (2011). Estudio de la actividad antibacteriana de películas elaboradas con quitosano a diferentes pesos moleculares incorporando aceites esenciales y extractos de especias como agentes antimicrobianos. Revista Mexicana de Ingeniería Química 10,455-463.         [ Links ]

Jouki, M., Tabatabaei Yazdi, F., Mortazavi, S.A., and Koocheki, A. (2013). Physical, barrier and antioxidant properties of a novel plasticized edible film from quince seed mucilage. International Journal of Biological Macromolecules 62, 500-507.         [ Links ]

Kim, I.-H., Yang, H.-J., Noh, B.-S., Chung, S.-J., and Min, S.C. (2012). Development of a defatted mustard meal-based composite film and its application to smoked salmon to retard lipid oxidation. Food Chemistry 133, 1501-1509.         [ Links ]

Lagha-Benamrouche, S., and Madani, K. (2013). Phenolic contents and antioxidant activity of orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels and leaves. Industrial Crops and Products 50, 723730.         [ Links ]

Li, B.B., Smith, B., and Hossain, M.M. (2006). Extraction of phenolics from citrus peels: I. Solvent extraction method. Separation and Purification Technology 48, 182-188.         [ Links ]

Luthria, D.L. (2008). Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chemistry 107, 745-752.         [ Links ]

Manthey, J.A., and Grohmann, K. (1996). Concentrations of hesperidin and other orange peel flavonoids in citrus processing byproducts. Journal of Agricultural and Food Chemistry 44, 811-814.         [ Links ]

Mariniello, L., Giosafatto, C.V., Di Pierro, P., Sorrentino, A., and Porta, R. (2010). Swelling, mechanical, and barrier properties of albedo-based films prepared in the presence of phaseolin cross-linked or not by transglutaminase. Biomacromolecules 11, 2394-2398.         [ Links ]

Mehdizadeh, T., Tajik, H., Razavi Rohani, S.M., and Oromiehie, A.R. (2012). Antibacterial, antioxidant and optical properties of edible starch-chitosan composite film containing Thymus kotschyanus essential oil. Veterinary Research Forum 3, 167-173.         [ Links ]

Mújica-Paz, H., Valdez-Fragoso, A., Hernández-Carrillo, J., and Welti-Chanes, J., 2011. Proceso para la elaboración de películas a partir de cítricos, las películas y su uso como empaque biodegradable y vehículo de compuestos activos. Solicitud de patente MX-a-2011-008209, 4 de Agosto del 2011, México.         [ Links ]

Nagy, S. (1980). Vitamin C contents of citrus fruit and their products: a review. Journal of Agricultural and Food Chemistry 28, 8-18.         [ Links ]

Nogata, Y., Sakamoto, K., Shiratsuchi, H., Ishii, T., Yano, M., and Ohta, H. (2006). Flavonoid composition of fruit tissues of citrus species. Bioscience, Biotechnology and Biochemistry 70, 178-192.         [ Links ]

Otoni, C.G., Moura, M.R.D., Aouada, F.A., Camilloto, G.P., Cruz, R.S., Lorevice, M.V., Soares, N.D.F.F., and Mattoso, L.H.C. (2014). Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films. Food Hydrocolloids 41, 188-194.         [ Links ]

Pereira de Abreu, D.A., Losada, P.P., Maroto, J., and Cruz, J.M. (2010). Evaluation of the effectiveness of a new active packaging film containing natural antioxidants (from barley husks) that retard lipid damage in frozen Atlantic salmon (Salmo salar L.). Food Research International 43, 1277-1282.         [ Links ]

Pérez-Gago, M.B., Serra, M., and del Río, M.A. (2006). Color change of fresh-cut apples coated with whey protein concentrate-based edible coatings. Postharvest Biology and Technology 39, 84-92.         [ Links ]

Pruneda, E., Peralta-Hernández, J.M., Esquivel, K., Lee, S.Y., Godínez, L.A., and Mendoza, S. (2008). Water vapor permeability, mechanical properties and antioxidant effect of Mexican oregano-soy based edible films. Journal of Food Science 73, C488-C493.         [ Links ]

Qin, Y.Y., Yang, J.Y., Lu, H.B., Wang, S.S., Yang, J., Yang, X.C., Chai, M., Li, L., and Cao, J.X. (2013). Effect of chitosan film incorporated with tea polyphenol on quality and shelf life of pork meat patties. International Journal of Biological Macromolecules 61, 312-316.         [ Links ]

Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E., and Aruoma, O.I. (2010). Bioactive phenolics and antioxidant propensity of flavedo extracts of Mauritian citrus fruits: Potential prophylactic ingredients for functional foods application. Toxicology 278, 75-87.         [ Links ]

Robards, K., Prenzler, P.D., Tucker, G., Swatsitang, P., and Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry 66, 401-436.         [ Links ]

Rodríguez-Marín, M. L., Bello-Pérez, L. A.,Yee-Madeira, H., and González-Soto, R. A. (2013). Propiedades mecánicas y de barrera de películas elaboradas con harina de arroz y plátano reforzadas con nanopartículas: estudio con superficie de respuesta. Revista Mexicana de Ingeniería Química 12, 165-176.         [ Links ]

Romero-Bastida, C. A., Zamudio-Flores, P. B., and Bello-Pérez, L. A. (2011). Antimicrobianos en películas de almidón oxidado de plátano: Efecto sobre la actividad antibacteriana, microestructura, propiedades mecánicas y de barrera. Revista Mexicana de Ingeniería Química 10, 445-453.         [ Links ]

Salgado, P.R., López-Caballero, M.E., Gómez-Guillén, M.C., Mauri, A.N., and Montero, M.P. (2012). Exploration of the antioxidant and antimicrobial capacity of two sunflower protein concentrate films with naturally present phenolic compounds. Food Hydrocolloids 29, 374-381.         [ Links ]

Siripatrawan, U., and Harte, B.R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids 24, 770-775.         [ Links ]

Sun, D.-W., and Li, B. (2003). Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. Journal of Food Engineering 57, 337-345.         [ Links ]

Tapia, M.S., Rojas-Graü, M.A., Carmona, A., Rodríguez, F.J., Soliva-Fortuny, R., and Martín-Belloso, O. (2008). Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloids 22, 1493-1503.         [ Links ]

Villagómez-Zavala, D. L., Gómez-Corona, C., San Martín Martínez, E., Pérez-Orozco, J.P., Vernon-Carter, E.J., and Pedroza-Islas., R. (2008). Comparative study of the mechanical properties of edible films made from single and blended hydrophilic biopolymer matrices. Revista Mexicana de Ingeniería Química 7, 263-273.         [ Links ]

Vinson, J.A., Su, X., Zubik, L., and Bose, P. (2001). Phenol antioxidant quantity and quality in foods: fruits. Journal of Agricultural and Food Chemistry 49, 5315-5321.         [ Links ]

Wang, Y.C., Chuang, Y.C., and Hsu, H.W. (2008). The flavonoid, carotenoid and pectin content in peels of citrus cultivated in Taiwan. Food Chemistry 106,277-284.         [ Links ]

Woranuch, S., Yoksan, R., and Akashi, M. (2014). Ferulic acid-coupled chitosan: Thermal stability and utilization as an antioxidant for biodegradable active packaging film. Carbohydrate Polymers 115, 744-751.         [ Links ]

Yapo, B.M. (2009). Pectin quantity, composition and physicochemical behaviour as influenced by the purification process. Food Research International 42, 1197-1202.         [ Links ]

Zhang, M., Duan, C., Zang, Y., Huang, Z., and Liu, G. (2011). The flavonoid composition of flavedo and juice from the pummelo cultivar (Citrus grandis (L.) Osbeck) and the grapefruit cultivar (Citrus paradisi) from China. Food Chemistry 129, 1530-1536.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons