SciELO - Scientific Electronic Library Online

 
vol.14 issue2Improving Agave duranguensis must for enhanced fermentation: C/N ratio effects on mezcal composition and sensory propertiesProduction and optimization of a chlorophyl-free leaf protein concentrate from alfalfa (Medicago sativa) through aqueous two-phase system author indexsubject indexsearch form
Home Pagealphabetic serial listing  

Services on Demand

Journal

Article

Indicators

Related links

  • Have no similar articlesSimilars in SciELO

Share


Revista mexicana de ingeniería química

Print version ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 n.2 Ciudad de México May./Aug. 2015

 

Biotecnología

 

Evaluación de la inhibición de Candida intermedia por efecto de sobrenadantes de bioprotectores y su efecto sinérgico

 

Evaluation of inhibition of the Candida intermedia due to the effect of supernatants from bioprotectors and their synergistic effect

 

A. Henao-Ardila1, M.X Quintanilla-Carvajal1, B.F Klotz-Ceberio2 y J.A Serna-Jiménez1*

 

1 Universidad de La Sabana, Facultad de Ingeniería de Producción Agroindustrial, Km. 7, Autopista Norte de Bogotá. Chía, Colombia. *Autora para la correspondencia. E-mail: andreasernajimenez@hotmail.com

2 Instituto Alpina de Investigación, Alpina Corporativo S.A., Km 3 Vía Briceño- Sopó, Sopó, Cundinamarca, Colombia.

 

Received March 23, 2014
Accepted May 28, 2015

 

Resumen

En este trabajo se evaluó el efecto inhibitorio de los sobrenadantes de tres bioprotectores comerciales (HOLDBAC YM-C® 100DCU, MicroGARD 200® y Lyofast FPR2®), con el fin de establecer el bioprotector con mayor efecto inhibitorio sobre la levadura alterante de alimentos Candida intermedia. De igual forma, se estudió el efecto sinérgico que tienen los bioprotectores, por medio de un diseño experimental de mezcla optimizada, para establecer el porcentaje óptimo de mezcla que maximice la inhibición de crecimiento de la Candida intermedia a una concentración de 10 exp 5 UFC/mL. El mayor efecto inhibitorio se obtuvo empleando los sobrenadantes del bioprotector MicroGARD 200®, reduciendo la carga microbiana en 3.2 ciclos logarítmicos, mientras que HOLDBAC YM-C® y Lyofast FPR2® redujeron la carga microbiana en 1.7 y 1.2 ciclos logarítmicos respectivamente. Se determinó que existe un efecto sinérgico entre los sobrenadantes de los bioprotectores y la mezcla óptima que maximiza la inhibición de la Candida intermedia contenía 23.7% de HOLDBAC y 76.3% de MicroGARD, reduciendo la carga microbiana en 3.4 ciclos logarítmicos.

Palabras clave: bioprotectores, sobrenadantes, Candida intermedia, optimización de mezcla, inhibición.

 

Abstract

In this work, the inhibitory effect of the supernatants of three commercial bioprotectors (HOLDBAC YM-C® 100DCU, MicroGARD 200® y Lyofasr FPR2®) was evaluated sn order to establish the most effective bioprotector against the food spoilage yeast Candidal intermedia. Additional, the synergistic effect of the bioprotectors was studied through an experimental design of optimized mixture to determine the optimum mixing ratio that maximizes inhibition of Candida intermedia at a concentration of 10 exp 5 CFU/mL. The highest inhibition was obtained using the supernatants of MicroGARD 200®, reducing the microbial load in 3.2 logarithmic cycles, while HOLDBAC YM-C® and Lyofast FPR2® reduced the microbial load in 1.7 and 1.2 logarithmic cycles respectively. It was determined that there is a synergistic effect between the supernatants of the bioprotectors and that the optimum mixing of bioprotectors that maximized inhibition of Candida intermediate contained 23.7 % of HOLDBAC and 76.3 % of MicroGARD, reducing the microbial load in 3.4 logarithmic cycles.

Key words: bioprotectors, supernatants, Candida intermedia, optimum mixing ratio, maximum inhibition.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Referencias

Corona-González R.I., Ramos Ibarra J.R., Gutiérrez-González P., Pelayo-Ortiz C., Guatemala-Morales G.M., Arriola-Guevara E. (2013). The use of response surface methodology to evaluate the fermentation conditions in the production of tepache. Revista Mexicana de Ingeniería Química 12, 19-28        [ Links ]

Garneau S., Martin N. I., Vederas J. C. (2002). Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie 84, 577-592.         [ Links ]

Ghanbari M., Jami M., Domig K.J., Kneifel W. (2013). Seafood biopreservation by lactic acid bacteria - A review. Food Science and Technology 54, 315-324.         [ Links ]

González-Olivares L.G., Jiménez-Guzmán J., Cruz-Guerrero A., Rodríguez-Serrano G., Gómez-Ruiz L., García-Garibay M. (2011). Liberation de peíptidos bioactivos por bacterias laícticas en leches fermentadas comerciales. Revista Mexicana de Ingeniería Química 10, 179-188.         [ Links ]

Holzapfel W.H., Haberer P., Geisen R., Bjorkroth J., Schillinger U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. American Journal of Clinical Nutrition 73, 356-373.         [ Links ]

Iwatani S., Zendo T., Sonomoto K. (2011). Class IId or Linear and Non-Pediocin-Like Bacteriocins. En: Prokaryotic Antimicrobial Peptides (HYPERLINK "http://link.springer.com/search?facet-author=%22Djamel+Drider%22" Drider D., HYPERLINK "http://link.springer.com/search?facet-author=%22Sylvie+Rebuffat%22" Rebuffat S.), Pp. 237-252. Springer, Nueva York.         [ Links ]

Jaramillo D., Meléndez A.P., Sánchez O.F. (2010). Evaluacién de la producción de bacteriocinas a partir de lactobacilos y bifidobacterias. Revista Venezolana de Ciencia y Tecnología 1, 193-209.         [ Links ]

Lind H., Jonsson H. Schnurer J. (2004). Antifungal effect of diary propioniobacteria-contribution of organic acids. International Journal of Food Microbiology 98, 157-165.         [ Links ]

Maciel N.O.P., Piló F.B., Freitas L.F.D., Gomes F.C.O., Johann S., Nardi R.M.D., Lachance M.A., Rosa C.A. (2013). The diversity and antifungal susceptibility of the yeasts isolated from coconut water and reconstituted fruit juices in Brazil. International Journal of Food Microbiology 160, 201-205.         [ Links ]

Medina Z., Sulbarán B., Ferrer A., Ojeda G. (2001). Resistencia térmica de levaduras en jugo de naranja a diferentes concentraciones de sólidos solubles. Alan 51, 167-172.         [ Links ]

Moll G. N., Van Den Akker E., Hauge H. H., Meyer J. N., Nes I. F., Konings W.N., Dries A. J. M. (1999). Complementary and Overlapping Selectivity of the Two-Peptide Bacteriocins Plantaricin EF and JK. Journal of Bacteriology 181, 4848-4852.         [ Links ]

Monroy M. C., Castro T., Fernández F. J., Mayorga L. (2009). Revision bibliográfica: Bacteriocinas producidas por bacterias probioticas. Contactos 73, 63-72.         [ Links ]

Palop A., Alvarez I., Raso J., Condon S. (2000). Heat resistance of Alicyclobacillus acidocaldarius in water, various buffers, and orange juice. Journal of Food Protection 10, 1377-1380.         [ Links ]

Pawlowska A. M., Zannini E., Coffey A., Arendt E.K. (2013). "Green Preservatives": Combating Fungi in the Food and Feed Industry by Applying Antifungal Lactic Acid Bacteria. Advances in Food and Nutrition Research 66, 215-236.         [ Links ]

Pereira S., Potes M.E., Marinho A., Malfeita M., Loureiro V. (2000). Characterization of yeast flora isolated from an artisanal Portuguese ewe's cheese. International Journal of Food Microbiology 60, 55-63.         [ Links ]

Pinto D., Marzani B., Minervini F., Calasso M., Giuliani G., Gobbetti M., De Angelis M. (2011). Plantaricin A synthesized by Lactobacillus plantarum induces in vitro proliferation and migration of human keratinocytes and increases the expression of TGF-1, FGF7, VEGF-A and IL-8 genes. Peptides 32, 1815-1824.         [ Links ]

Quigley L., O'Sullivan O., Beresford T.P., Ross P.R., Fitzgerald G.F, Cotter P.D. (2011). Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. International Journal of Food Microbiology 150, 81-94.         [ Links ]

Rodríguez E.N. (2011). Uso de agentes antimicrobianos naturales en la conservación de frutas y hortalizas. Ra Ximhai 7, 153-170.         [ Links ]

Rodríguez J.M., Serna J.A., Uribe M.A., Klotz B., Quintanilla M.X. (2014). Aplicación de la metodología de superficie de respuesta para evaluar el efecto de la concentración de azúcar y de cultivos iniciadores comerciales sobre la cinética de fermentación de yogurt. Revista Mexicana de Ingeniería Química 13, 213-225.         [ Links ]

Romero-Bastida C.A., Zamudio-Flores P.B., Bello-Pérez L.A. (2011). Antimicrobianos en películas de almidón oxidado de plátano: efecto sobre la actividad antibacteriana, microestructura, propiedades mecánicas y de barrera. Revista Mexicana de Ingeniería Química 10, 445-453.         [ Links ]

Roostita, R., Fleet G.H. (1996). The occurrence and growth of yeasts in Camembert and Blue-veined cheeses. International Journal of Food Microbiology 80, 393-404.         [ Links ]

Schagger H., Von Jagow G. (1987). Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis for the Separation of Proteins in the Range from 1 to 100 kDa. Analytical Biochemistry 166, 368-379.         [ Links ]

Schwenninger S. M., Meile L., Lacroix C. (2011). Antifungal lactic acid bacteria and propionibacteria for food biopreservation. En: Protective Cultures, Antimicrobial Metabolites and Bacteriophages for Food and Beverage Biopreservation (Lacroix C.), Pp. 27-62. Woodhead Publishing, Oxford.         [ Links ]

Singh N. P., Tiwari A., Bansal A., Thakur S., Sharma G., Gabrani R. (2015). Genome level analysis of bacteriocins of lactic acid bacteria. Computational Biology and Chemistry 56, 1-6.         [ Links ]

Song, D. F., Zhu, M. Y., Gu, Q. (2014). Purification and Characterization of Plantaricin ZJ5, a New Bacteriocin Produced by Lactobacillus plantarum ZJ5. Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0105549. Accesado: 3 marzo 2015.         [ Links ]

Thierry A., Falentin H., Deutsch S. M., J., Jan G. (2011). Bacteria, Beneficial Propionibacterium spp. En: Encyclopedia of Dairy Sciences (Fuquay J. W.), Pp. 403-411. Academic Press, San Diego.         [ Links ]

Todorov S.D., Dicks L.M.T. (2006). Screening for bacteriocin-producing lactic acid bacteria from boza, a traditional cereal beverage from Bulgaria: Comparison of the bacteriocins. Process Biochemistry 41, 11-19.         [ Links ]

Todorov S.D., Holzapfel W. H. (2015). Traditional cereal fermented foods as sources of functional microorganisms. En: Advances in Fermented Foods and Beverages Improving Quality, Technologies and Health Benefits (Holzapfel W.), Pp. 123-153. Woodhead Publishing, Cambridge.         [ Links ]

Tolinački, M., y J. Lozo, A. Terzic-Vidojevic, L. Topisirovic, D. Fira M. Kojic. (2010). Characterization of the bacteriocin-producing strain lactobacillus paracasei subsp. paracasei bgub9. Archives of Biological 62, 889-899.         [ Links ]

Van Reenen C. A., Dicks L. M., Chikindas M.L. (1998). Isolation, purification and partial characterization of plantaricin 423, a bacteriocin produced by Lactobacillus plantarum. Journal of Applied Microbiology 84, 1131-1137.         [ Links ]

Verma A. K., Banerjee R., Dwivedi H. P., Juneja V. K. (2014). BACTERIOCINS, Potential in food preservation. En: Encyclopedia of Food Microbiology (BattMary C. A., Tortorello L.), Pp. 180-186. Academic Press, Oxford.         [ Links ]

Wojtatowicz M., Chrzanowska J., Juszczyk P., Skiba A., Gdula A. (2001). Identification and biochemical characteristics of yeast microflora of Rokpol cheese. International Journal of Food Microbiology 69, 135-140.         [ Links ]

Creative Commons License All the contents of this journal, except where otherwise noted, is licensed under a Creative Commons Attribution License