SciELO - Scientific Electronic Library Online

 
vol.14 número2Producción de metano utilizando residuos cunícolasCambios en la microestructura de Salmonella Typhimurium y Listeria monocytogenes expuestas a sales hidroxicinámicas índice de autoresíndice de assuntospesquisa de artigos
Home Pagelista alfabética de periódicos  

Serviços Personalizados

Journal

Artigo

Indicadores

Links relacionados

  • Não possue artigos similaresSimilares em SciELO

Compartilhar


Revista mexicana de ingeniería química

versão impressa ISSN 1665-2738

Rev. Mex. Ing. Quím vol.14 no.2 Ciudad de México Mai./Ago. 2015

 

Biotecnología

 

Enzymatic pretreatment to enhance chemical bleaching of a kraft pulp

 

Pretratamiento enzimático para mejorar el blanqueamiento químico de una pulpa kraft

 

M. García-Rivero1, I. Membrillo-Venegas1, S.E. Vigueras-Carmona1, G. Zafra-Jiménez1, P.B. Zárate-Segura2 and M.A. Martínez-Trujillo1*

 

1 División de Ingeniería Química y Bioquímica, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico esq. Av. Carlos Hank González, Col. Valle de Anáhuac, CP 55210, México, México. *Corresponding author. E-mail: auro_mt@yahoo.com

2 Departamento de Biotecnología. Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional. Av. Acueducto s/n, Col. La Laguna Ticomán, D.F. México, CP 07340.

 

Received March 11, 2015
Accepted May 25, 2015

 

Abstract

Enzymatic xylanases and laccases-rich filtrates were produced by Aspergillus sp and Phanerochaete chrysosporium ATCC 24725, respectively, using agroindustrial residues as the sole carbon source. Their stabilities on different pH, temperature and ionic salt conditions were evaluated kinetically, and it was also identified trie presence of additional enzymatic activities. Finally, an enzymatic pretreatment of kraft pulp was conducted in order to improve the action of chemical compounds used later on. Enzyme filtrates were resistant to the presence of various ionic salts and denaturing solutions, and they had a good stability into a wide range of pH values (from 3 to 9), although they showed low stabilities at temperatures higher than 50°C. Xylanases and laccases were the predominant enzymatic activities observed on the corresponding filtrates. In addition, the enzyme-pretreated pulp had lower kappa number than the not pretreated control. On the other hand, the enzymatic pretreatment produced liquore that showed high contents of residual lignin and chromophore compounds, which indicate the positive action of enzymes on kraft pulp structure.

Key words: kappa number, xylanases, laccases, Aspergillus, Phanerochaete chrysosporium.

 

Resumen

Se obtuvieron filtrados enzimáticos ricos en xilanasas y lacasas producidos por Aspergillus sp y Phanerochaete chrysosporium ATCC 24725, respectivamente, utilizando residuos agroindustriales como única fuente de carbono. Se estimaron las estabilidades de los filtrados ante diferentes valores de pH, temperatura y la presencia de sales y soluciones desnaturalizantes. Finalmente, se desarrolló con estos un pretratamiento enzimático de pulpa kraft con el objetivo de favorecer la acción posterior de compuestos químicos. Los filtrados enzimáticos resultaron ser resistentes a la presencia de diversas sales iónicas y soluciones desnaturalizantes y mostraron buena estabilidad en un intervalo amplio de valores de pH (de 3 a 9), aunque su estabilidad fue baja en temperaturas mayores a 50°C. Las xilanasas y lacasas fueron las actividades enzimáticas predominantes del filtrado correspondiente. La pulpa kraft que fue pretratada con las enzimas tuvo menor número kappa que la que se sometió solamente a tratamiento químico, y los licores provenientes del pretratamiento enzimático mostraron un mayor contenido de lignina residual y compuestos cromóforos, lo que indica la acción de las enzimas sobre la estructura de la pulpa.

Palabras clave: xilanasas, lacasas, Aspergillus, Phanerochaete chrysosporium, número kappa.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

PBZS wants to thank to project SIP 20110501 for the support.

 

References

Ahlawat, S., Battan, B., Dhiman, S. S., Sharma, J. and Mandhan R. P. (2007). Production of thermostable pectinase and xylanase for their potential application in bleaching of kraft pulp. Journal of Industrial Microbiology and Biotechnology 34, 763-770.         [ Links ]

Bajpai, P. (2004). Biological Bleaching of Chemical Pulps. Critical Review in Biotechnology 24,158.         [ Links ]

Bajpai, P. (2012). Biotechnology for Pulp and Paper Processing. Springer, N.Y.         [ Links ]

Beg, Q. K., Bhushan, B., Kapoor, M. and Hoondal, G. S. (2000). Enhanced production of a thermostable xylanase from Streptomyces sp. QG-11-3 and its application in biobleaching of eucalyptus kraft pulp. Enzyme and Microbiology Technology 27, 459-466.         [ Links ]

Bertrand, B., Martínez-Morales, F., and Trejo-Hernández, M. R. (2013). Fungal laccases: induction and production. Revista Mexicana de Ingeniería Química 12, 473-488.         [ Links ]

Camacho, N. A. and Aguilar, G. (2003). Production, Purification, and Characterization of a Low-Molecular-Mass Xylanase from Aspergillus sp. and Its Application in Baking. Applied Biochemistry and Biotechnology 104, 159-171.         [ Links ]

Carmona, E. C., Fialho, M. B., Buchgnani, E. B., Coelho, G.D., Brocheto-Braga, M. R. and Jorge, J. A. (2005). Production, purification and characterization of a minor form of xylanase from Aspergillus versicolor. Process Biochemistry 40, 359-364        [ Links ]

Dashtban, M., Schraft, H., Syed, T. A. and Qin, W. (2010). Fungal biodegradation and enzymatic modification of lignin. International Journal Biochemistry Molecular Biology 1, 36-50.         [ Links ]

Dittmer, J. K., Patel, N. J., Dhawale, S. W. and Dhawale, S. S. (1997). Production of multiple laccase isoforms by Phanerochaete chrysosporium grown under nutrient sufficiency. FEMS Microbiology Letters 149, 65-70.         [ Links ]

Dwivedi, P., Vivekanand, V., Pareek, N., Sharma, A. and Singh, R. P. (2010). Bleach enhancement of mixed wood pulp by xylanase-laccase concoction derived through co-culture strategy. Applied Biochemistry and Biotechnology 160, 255-268.         [ Links ]

Eugenio, M. E., Santos, S. M., Carbajo, J. M., Martín, J. A., Martín-Sampedro, R., González, A. E. and Villar, J. C. (2010). Kraft pulp biobleaching using an extracellular enzymatic fluid produced by Pycnoporus sanguineus. Bioresource technology 101, 1866-1870.         [ Links ]

Fiedurek, J. and Gromada, A. (2000). Production of catalase and glucose oxidase by Aspergillus niger using unconventional oxygenation of culture. Journal of Applied Microbiology 89, 85-89.         [ Links ]

Georis, J., Giannotta, F., De Buyl, E., Granier, B. and Frere, J. (2000). Purification and properties of three endo-β-1,4-xylanase produced by Streptomyces sp. strain S38 which differ in their ability to enhance the bleaching of kraft pulps. Enzyme Microbiology Technology 26, 178-186.         [ Links ]

Hwang, I.T., Lim, H.K., Song, H.Y., Cho, S.J., Chang, J. and Park, N. (2010). Cloning and characterization of a xylanase, KRICT PX1 from the strain Paenibacillus sp. HPL-001. Biotechnology Advances 28, 594-601.         [ Links ]

Hubbe, M. A. and Bowden, C. (2009). Handmade paper: a review of its history, craft, and Science. Bioresources 4, 1736-1792.         [ Links ]

Jones, P.W. and Williams, D. R. (2002). Chemical speciation simulation used to assess the efficiency of environment-friendly EDTA alternatives for use in the pulp and paper industry. Inorganica Chimica Acta 339, 41-50.         [ Links ]

Kapoor, M., Kapoor, R. K., and Kuhad, R. C. (2007). Differential and synergistic effects of xylanase and laccase mediator system (LMS) in bleaching of soda and waste pulps. Journal of Applied Microbiology 103, 305-317.         [ Links ]

Khandeparkar, R. and Bhosle, N. B. (2007). Application of thermoalkalophilic xylanase from Arthrobacter sp. MTCC 5214 in biobleaching of kraft pulp. Bioresource Technology 98, 897-903.         [ Links ]

Kim, D.Y., Han, M.K., Oh, K., Park, D., Kim, S., Lee, S., Shin, D., Son, K., Bae, K.S. and Park, H.Y. (2010). Catalytic properties of a GH10 endo-β-1,4-xylanase from Streptomyces thermocarboxydus HY-15 isolated from the gut of Eisenia fetida. Journal of Molecular Catalysis B: Enzymatic 62, 32-39.         [ Links ]

Krisana, A., Rutchadaporn, S., Jarupan, G., Lily, E., Sutipa, T. and Kanyawim, K. (2005). Endo-1,4-β-xylanase B from Aspergillus niger BCC14405 isolated in Thailand: Purification, Characterization and Gene Isolation. Journal of Biochemistry and Molecular Biology 38, 17-23.         [ Links ]

Li, X. T., Jiang, Z. Q., Li, L. T., Yang, S. Q., Feng, W. Y., Fan, J. Y. and Kusakabe, I. (2005). Characterization of a cellulase-free, neutral xylanase from Thermomyces lanuginosus CBS 288.54 and its biobleaching effect on wheat straw pulp. Bioresource Technology 96, 1370-1379.         [ Links ]

Mäkelä, M., Galkin, S., Hatakka, A., Lundell, T. (2002). Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme and Microbial Technology 30, 542-549.         [ Links ]

Martin-Sampedro, R., Rodríguez, A., Ferrer, A., García-Fuentevilla, L. L., and Eugenio, M. E. (2012). Biobleaching of pulp from oil palm empty fruit bunches with laccase and xylanase. Bioresource Technology 110, 371-378.         [ Links ]

Martínez-Trujillo, A., Aranda, J. S., Gómez-Sánchez, C., Trejo-Aguilar, B. and Aguilar-Osorio, G (2009). Constitutive and inducible pectinolytic enzymes from Aspergillus flavipes FP-500 and their modulation by pH and carbon source. Brazilian Journal of Microbiology 40, 40-47.         [ Links ]

Mejía-Díaz, L. A., and Rutiaga-Quinones, J. G. (2008). Chemical composition of Schinus molle L. wood and kraft pulping process. Revista Mexicana de Ingeniería Química 7, 145-149.         [ Links ]

Membrillo-Venegas, I., Fuentes-Hernández, J., García-Rivero, M. and Martínez-Trujillo, A. (2013). Characteristics of Aspergillus niger xylanases produced on rice husk and wheat bran in submerged culture and solid-state fermentation for an applicability proposal. International Journal of Food Science and Technology 48, 1798-1807.         [ Links ]

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31, 426-428.         [ Links ]

Munusamy, U., Sabaratman, V., Muniandy, S., Abdulla, N., Pandey, A. and Jones, E. B. G. (2008). Characterisation of Laccase from Pycnoporus sanguineus KUM 60953 and KUM 60954. Journal of Biology Science 8, 866-873.         [ Links ]

Niladevi, K. N., Jacob, N. and Prema, P. (2008). Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: Purification and characterization. Process Biochemistry 43, 654-660        [ Links ]

NMX-AA, N. M., de la Federación, D. O. Norma Oficial Mexicana NOM-001-ECOL-1996.         [ Links ]

Oller, I., Malato, S. and Sánchez Pérez, J. A. (2011). Combination of Advanced Oxidation Processes and biological treatments for wastewater decontamination -A review. Science ofthe Total Environment 409, 4141-4166.         [ Links ]

Podgornik, H., Stegu, M., Zibert, E. and Perdih, A. (2001). Laccase production by Phanerochaete chrysosporium an artefact caused by Mn(III)? Letters in Applied Microbiology 32, 407-411.         [ Links ]

Pokhrel, D. and Viraraghavan, T. (2004). Treatment of pulp and paper mill wastewater - a review. Science of the Total Environment 333, 37-58.         [ Links ]

Ponce, N. T. and De la Torre, M. (1995). Isolation of a high-specific-growth-rate mutant of Cellulomonas flavigena on sugar cane bagasse. Applied. Microbiology and Biotechnology 42, 709-712.         [ Links ]

Rodríguez, S., Fernández, M., Bermúdez, R.C. and Morris, H. (2002). Purification de la enzima lacasa a partir del cultivo de Pleurotus ostreatus en medio residuales. Revista Cubana Química 14, 83-93.         [ Links ]

Singh, P., Sulaiman, O., Hashim, R., Rupani, P. F. and Peng, L. C. (2010). Biopulping of lignocellulosic material using different fungal species: a review. Review Environmental Science Biotechnology 9, 141-151        [ Links ]

Srinivasan, M. C.and Rele, V. (1999). Microbial xylanases for paper industry. Current Science 77, 137-142.         [ Links ]

TAPPI 236. Kappa number of pulp. Pulp Properties Committee of the Process and Product Quality Division.         [ Links ]

Téllez-Téllez, M.; Sánchez, C. Sánchez; Díaz, R.; Díaz-Godínez, G. (2012). Zymogram patterns of extracellular laccases of Pleurotus species grown on noninducer agar medium. Revista Mexicana de Ingeniería Química 11, 383-388.         [ Links ]

Thiagarajan, S., Jeya, M. and Gunasekaran, P. (2006). Purification and characterization of a high molecular weight endoxylanase from the solid-state culture of an alkali-tolerant Aspergillus fumigatus MKU1. World Journal Microbiology Biotechnology 22, 487-492.         [ Links ]

Thompson, G., Swain, J., Kay, M. and Forster, C. F. (2001). The treatment of pulp and paper mill effluent: a review. Bioresource Technology 77, 275-286.         [ Links ]

Torres, C. E., Negro, C., Fuente, E. and Blanco, A. (2012). Enzymatic approaches in paper industry for pulp refining and biofilm control. Applied Microbiology Biotechnology 96, 327-344.         [ Links ]

Torres, L. F., Melo, R., Colodette, J.L. (2005). Pulpa kraft blanqueada a partir de Pinus tecunumanii. Bosque 26, 115-122.         [ Links ]

Valls, C., Quintana, E., and Roncero, M. B. (2012). Assessing the environmental impact of biobleaching: Effects of the operational conditions. Bioresource Technology 104, 557-564.         [ Links ]

Valls, C. and Roncero, M. B. (2009). Using both xylanase and laccase enzymes for pulp bleaching. Bioresource Technology 100, 2032-2039.         [ Links ]

Creative Commons License Todo o conteúdo deste periódico, exceto onde está identificado, está licenciado sob uma Licença Creative Commons